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EXECUTIVE SUMMARY 
 
Joint quality affects stresses and deflections, which result from gear and environmental loading, 
and, hence, short- and long-term performance of rigid pavements. More specifically, multiple 
researchers have shown that looseness of dowel bars greatly affects responses of Portland cement 
concrete (PCC) pavement and its performance due to the reduction in load-transfer efficiency. 
Aware of the relevance of joint efficiency, researchers have used multiple approaches to include 
it in analyses: closed-form solutions, finite element (FE) analysis, and response from pavement 
instrumentation. This study combines the three approaches to consider the effect of joint continuity 
on temperature responses of airfield rigid pavement. 
 
The effects of partially restrained edges and temperature on the responses of airfield rigid 
pavement were studied using closed-form solutions, FE modeling, and pavement instrumentation. 
Partial restraints along the edges represent various levels of load-transfer efficiency and were 
modeled using linear translational and rotational springs. The stiffness of the springs can vary from 
zero (i.e., no load is transferred) to infinity (i.e., perfect load transfer efficiency). The effect of 
partially restrained edges on three phenomena—curling responses of slab-on-grade systems, 
pavement blowup of slab-on-grade systems, and curling responses of a multilayer rigid 
pavement—were considered. Closed-form solutions were derived using classical approaches, and 
Westergaard’s seminal work on rigid pavement analysis was extended. The solutions provided 
stresses and deflections for an infinitely long slab-on-grade system subjected to linear temperature 
distribution. Furthermore, algebraic expressions to calculate blowup load of a rectangular concrete 
pavement are presented. Finally, multiple layers were included in an ABAQUS FE model and 
nonlinear temperature profiles were adopted. The model was validated using pavement 
instrumentation responses. 
 
The results showed that joint quality of airfield rigid pavement affects the pavement’s response to 
temperature. The maximum deflection and stresses caused by linear and nonlinear temperature 
profiles were affected by the ability of joints to transfer shear force and bending moment across 
slabs. When considering the free edge as a reference, partial rotational restraint accounted for most 
of the difference in pavement responses; rotational restraints are not considered in conventional 
analysis approaches. The influence of partial restraints was evident in the blowup analysis. It was 
observed that as springs’ translational stiffness increased, rotational springs became more relevant. 
Finally, it was noticed that short slabs’ responses were more sensitive to joint condition.   
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1.  INTRODUCTION 

1.1  BACKGROUND 

Joint quality affects stresses, deflections, and short- and long-term performance of rigid 
pavements. More specifically, multiple researchers have shown that looseness of dowel bars 
greatly affects responses of Portland cement concrete (PCC) pavement (Davids & Mahoney, 
1999), and that load-transfer efficiency at cracks and joints greatly affects pavement’s performance 
(Khazanovich & Gotlif, 2003). As a result, state highway agencies have invested resources to 
determine the joint quality. Approximately 38% of states use a falling-weight deflectometer 
(FWD) to test at corners and edges of rigid pavements (Alavi et al., 2008). 
 
Aware of the relevance of joint continuity, researchers have used multiple approaches to include 
it in analyses: closed-form solutions, finite element analysis (FEA), and pavement instrumentation. 
Each approach has its own benefits and drawbacks. FEA is computationally expensive and requires 
special training, but it can represent virtually any real-life scenario. Pavement instrumentation is 
very costly but, when done properly, provides the most accurate information. Closed-form 
solutions can be applied to a limited number of cases but provide an acceptable quality of results 
almost instantly.  
 
This study combines the three approaches to consider the effect of joint continuity on temperature 
responses of airfield rigid pavement. First, Westergaard’s (1927) solution for temperature 
responses of slab-on-grade systems was extended to consider partially restrained joints. 
Maintaining all other Westergaard assumptions unmodified, closed-form solutions for curling 
stresses and deflections of an infinitely long slab that is partially restrained as to displacement and 
rotation were derived. After detailing the procedure to find the solutions, the finite element (FE) 
method validated the proposed model. Subsequently, the effect of partial restraint along the edges, 
geometry, and material properties of the systems on slab displacements and stresses were studied. 
Adjustment factors that relate curling responses of slabs, from square to infinitely long, were 
calculated. 
 
Second, the combined effect of nonlinear temperature profile and slab connectivity on curling 
stresses and deflections of a multilayer rigid pavement was addressed. Temperature measurements 
and a modified version of the enhanced integrated climatic model (EICM) predicted temperature 
profiles. The temperature input covered 5,263 hours and a wide range of average temperatures, 
temperature gradients, and degrees of nonlinearity. Linear springs in the shear and bending 
direction simulated slab connectivity, and comparison between measured and predicted strains at 
the bottom of the slab validated the FE model. The evaluation focused on the tensile stresses and 
corner deflections, which are related to fatigue life and faulting, respectively.  
 
Third, the phenomenon of pavement blowup was investigated, focusing on the effect of partially 
restrained edges. Closed-form solutions for the critical load were derived. The proposed equations 
to calculate blowup load can be applied to concrete pavement with any in-plane dimensions, 
including infinitely long or wide. Two opposite edges of the slab were partially restrained as to 
rotation and displacement by assigning translational and rotational elastic springs. Consequently, 
any combination of classical boundary conditions can be captured in a single stability equation, 
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including interaction with a rigid structure. The obtained results were successfully compared with 
expressions assuming classical boundary conditions and values from a FE model. 
 
1.2  OBJECTIVE AND SCOPE 

The main objective of this study was to use pavement instrumentation, the FE method, and closed-
form solutions to include partially restrained edges in the temperature responses of rigid pavement, 
focusing on curling and blowup. 
 
1.3  REPORT OVERVIEW 

This report consists of seven sections and two appendices. Section 2 summarizes the literature 
review on the responses of rigid pavement to temperature, focusing on curling and blowup 
analysis. Section 3 studies slab-on-grade systems and presents a closed-form solution to the 
stresses and deflections when the slab edges are partially restrained to rotation and displacement. 
Section 4 examines the system as it is extended to multiple layers, and a FE model is developed to 
assess the effect of joint condition on curling responses of airfield rigid pavement. Section 5 
focuses on blowup analysis of the slab-on-grade system for a slab with partially restrained edges. 
Section 6 summarizes the main conclusions of this study, and section 7 provides a list of references. 
Appendix A lists a linear system of equations and solution for slab on-grade systems, and 
appendix B provides terms in the characteristic stability equation. 
 
2.  LITERATURE REVIEW 

2.1  CURLING STRESSES IN RIGID PAVEMENT 

Curling stresses develop in rigid pavement due to variation in temperature between the top and 
bottom of the concrete slab. Although curling stresses may not be as significant as vehicular-
loading stresses, curling stresses usually result in increased cracking potential and, hence, reduce 
pavement serviceability and affect long-term performance. Westergaard (1927) conducted one of 
the first studies on stresses caused by the temperature differential across concrete-slab thickness 
and proposed closed-form solutions for infinitely long and semi-infinite slabs. In addition to plate 
theory assumptions (i.e., cross section before bending remains a plane after bending, slab’s 
thickness is small compared to the other dimensions, and vertical strain is negligible (Timoshenko 
& Woinowsky-Krieger, 1959), Westergaard (1927) assumed linear elastic homogenous concrete, 
linear temperature distribution throughout the slab’s thickness, no loss of support between the slab 
and the Winkler foundation, and the slab’s edges being free to rotate and translate. 
 
Westergaard’s closed-form solution has been improved over the years by eliminating some of its 
assumptions. In 1993, analytical expressions for displacements and stresses considering separation 
between the slab and the Winkler foundation were derived. The procedure divided the problem 
into two domains, one for the part in contact with the Winkler foundation (same as Westergaard’s 
equations) and the other one for the lifted part. The equations can be applied to infinitely long and 
semi-infinite slabs satisfying Westergaard’s other assumptions, including free rotation and 
displacement along the edges (Tang et al., 1993). Similarly, in 1998, Liang and Niu combined 
thermal and plate analysis to derive closed-form expressions for the temperature distribution and 
curling stresses of a three-layer concrete pavement. In addition to no restriction to displacement 
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and rotation along the slab’s edges, the main assumption to calculate curling stresses was the 
decomposition of total deflection into the components along each direction without any coupling. 
The frequency of temperature variation was more relevant than the magnitude of the temperature 
variation itself (Liang & Niu, 1998). Finally, Ioannides and his coauthors (1999) combined the FE 
method and artificial neural networks to assess the implications of Westergaard’s assumptions. 
The most restrictive and consequential assumption of Westergaard is full contact between the PCC 
and the underlying layer, but the accuracy of the closed-form solution for a slab under load and 
curling and the other methods was similar. 
 
More specifically, linear temperature distribution has received special attention; and numerous 
studies have quantified the effect of nonlinear temperature on curling stresses. Regarding linearity, 
slab temperatures measured over a 9-month period revealed nonlinear profiles on a rigid pavement 
9 inches thick (Richardson & Armaghani, 1987). Regarding the effect on curling stresses, linear 
temperature profiles provided lower curling stresses during evening and early morning hours; the 
difference in tensile stresses between the linear and nonlinear assumptions was as high as 300% 
(Mohamed & Hansen, 1997). Similarly, Ioannides and Khazanovich (1998) highlighted the 
relevance of self-equilibrating stresses, which result from the nonlinear component of the 
temperature profile. Hiller and Roesler (2010) compared pavement damage and found inaccurate 
predictions of fatigue life when omitting temperature nonlinearity. 
 
Even though temperature distribution is the driving factor, curling stresses also depend on 
properties of the PCC, the slab’s geometry, the supporting structure (i.e., subbase and subgrade), 
and connectivity among slabs (Ceylan et al., 2016). The effect of slab connectivity on curling 
stresses has received minor attention. Some efforts modeled concrete pavement and dowel bars 
using finite elements, resulting in high computational cost (William and Shoukry, 2001). The main 
purpose of the finely meshed dowel bars was to investigate the stress state around the dowel bars 
under various temperature profiles. The frictional interaction between the dowel bars and concrete 
allowed for partial contact caused by curling, which resulted in a reduction of slab deflection. 
Deflections from the FE method were smaller than in Westergaard’s equations, when assuming a 
linear temperature gradient. In addition, the difference between the FE method and Westergaard’s 
stresses was 9.3% at the center and 16% at the joints, with the FE method providing higher stresses. 
Westergaard’s analysis was proved useful for the curling component of total thermal stresses in a 
PCC slab (William & Shoukry, 2001). Following a similar approach, Shoukry et al. (2007) 
reported small differences between the FE method and Westergaard’s solution when using 
24-degrees-of-freedom brick elements. 
 
An alternative approach to represent dowel bars and avoid high computational cost is to use them 
as linear springs. Nishizawa et al. (1996) used such an approach to show insensitivity of curling 
stresses to shear springs. The rotational springs caused difference in the curling stresses of up to 
8% (higher for higher rotational springs) when the temperature gradient was 61°F. The 8% 
difference was deemed small, and the proposed equation for curling stresses ignored bending 
springs (Nishizawa et al., 1996). Similarly, Wang and Chen (2011) modified NIKE3D (three-
dimensional FE software developed by the Federal Aviation Administration (FAA) for the analysis 
of airfield rigid pavement), to improve curling calculations. The study considered the effect of the 
interaction between multiple slabs as shear stress by using linear spring elements.  
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The influence of dowel-bar looseness on principal stresses in a concrete slab and the impact of the 
vertical stress on the base layer has been also examined using a FE method. Looseness, which is 
directly related to the edge condition, increased the maximum principal tensile stress (Davids, 
2000) and decreased the load-transfer efficiency (Kim & Hjelmstad, 2003). Davids (2000) used 
the embedded FE formulation to model the dowel bar. The formulation allowed debonding from 
the slab and considered the gap around the dowel bar, and the looseness was modeled using the 
Winkler foundation concept. Kim and Hjelmstad (2003) used Timoshenko beam elements to 
simulate the dowels. Between 15% and 30% of the wheel load was transferred from one slab to 
the other by the dowels, with 95% of that transfer being done with the 9 to 11 dowel bars closest 
to the load (Kim & Hjelmstad, 2003). 
 
FAA Rigid and Flexible Iterative Elastic Layered Design (FAARFIELD), the airfield pavement-
design software developed by the FAA, has been used to determine the effect of stress-based load-
transfer efficiency on airfield rigid pavement. It was concluded that (1) stress-based load-transfer 
efficiency, 𝐿𝐿𝐿𝐿𝐸𝐸(𝑆𝑆), is relevant for thickness design of rigid pavements; and (2) the temperature 
gradient in the slab influences 𝐿𝐿𝐿𝐿𝐸𝐸(𝑆𝑆) (Joshi et al., 2012). As for the dowel bar, a stiffness-matrix 
approach was proposed by Guo et al. (1995). The methodology does not depend on a fine mesh 
for studying the dowel-concrete interaction and load-transfer mechanism. The stiffness matrix of 
the dowel bars, which was incorporated in a FE code, was derived assuming three segments for 
the dowel bar, two embedded in the concrete and one along the joint spacing. A reasonable 
agreement was reported between measured and calculated dowel-bar responses. 
 
Curling in concrete pavement has also been studied using instrumentation. For instance, curling 
and temperature measurements indicated that the effect of high-positive-temperature gradients can 
be decreased because of built-in curling (Yu et al., 1998); and measurement of temperature and 
strain distribution along the slab’s depth showed that they are nonlinear, mainly at the edges of the 
slab (Wei et al., 2019). Furthermore, curling calculated based on deflections at the slab corners 
identified upward slab curling and built-in curling as relevant for top-down cracking (Beckemeyer 
et al., 2002). Using measured deflections at the center of the slab, it was found that a slightly higher 
curling is caused by a positive temperature differential than by negative one (Siddique et al., 2005). 
Not many studies using experimental measurements have focused on the slab’s edge condition. 
One of the exceptions is the work of Asbahan and Vandenbossche (2011), who determined the 
slab’s curvature from strain gauge, temperature, moisture, and surface-profile readings. Two types 
of slabs, restrained (with tie and dowel bars) and unrestrained (no dowel or tie bars), were 
instrumented. The restrained slab showed 60% lower curvature than the unrestrained one, which 
underscores the relevance of the boundary conditions along the edges of the slab. 
 
2.2  RIGID-PAVEMENT BLOWUP 

Analytical models aimed at studying concrete-pavement blowup lack a proper representation of 
the boundary conditions. Regardless of slab geometry, material properties, and loading conditions, 
existing approaches have focused on slabs with classical boundary conditions (i.e., simply 
supported, clamped, or free). For certain slab geometries such as circular and rectangular, there 
are exact stability equations as long as the boundaries are either free or fully restrained (Wang et 
al., 2004). 
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The buckling of a long slab resting on an elastic foundation, with consideration of the potential 
detachment between slab and foundation, has been studied previously (Seide,1958), but the 
stability equation was limited to simply supported slabs. Similarly, stability of an infinitely long 
and wide slab has been addressed using the Fourier transform (Kim, 2004). The model considered 
a moving load of constant amplitude, a stationary harmonic load, and a moving harmonic load. 
Even though static and dynamic stability was captured, the solution cannot be applied to slabs with 
finite dimensions, such as concrete pavements. Yu and Wang (2008) also studied rectangular slabs 
on elastic foundations; however, the stability equations were different for the various combinations 
of classical boundary conditions, which complicates their implementation. Even though there are 
procedures to analyze the stability of beam-columns on an elastic foundation with generalized 
boundary conditions (Areiza-Hurtado et al., 2005), no such expressions exist for rigid pavements. 
 
Rigid-pavement blowup can be understood by studying the stability of slabs on an elastic 
foundation (also known as a liquid, or Winkler, foundation). Rigid pavements contract during cold 
temperatures, increasing the joint spacing. The space between slabs can potentially be filled with 
incompressible debris, constraining pavement expansion during high temperatures. Restrained 
expansion translates into axial forces in the concrete slab, which might increase until reaching a 
buckling load. Some attempts have been made to give theoretical explanation to pavement blowup, 
mainly by Kerr and his coauthors (Kerr, 1994, 1997; Kerr & Dallis, 1985; Kerr & Shade, 1984). 
The work revolved around determining safe temperature increments before the rigid pavement 
buckled, and it assumed uniform temperature increment. A long pavement was considered, and 
the analysis was performed on a unit-width slab supported on an infinitely rigid base. In addition, 
nonlinear pavement-base shear interface forces were included (Kerr & Dallis, 1985; Kerr & Shade, 
1984). The solution was used to determine the relevance of various variables on rigid-pavement 
stability, such as the coefficient of thermal expansion, pavement thickness and stiffness, pavement 
base interface forces, and stiffness at joints and cracks (Kerr and Dallis, 1985). The methodology 
was extended to quantify the influence of an adjacent rigid structure on pavement blowup (Kerr, 
1994). The main drawback of this work lies in assuming a long pavement and an infinitely rigid 
base support.  
 
3.  SLAB-ON-GRADE RIGID PAVEMENT 

Closed-form expressions for calculating stresses and displacements of partially restrained concrete 
pavement caused by a linear temperature gradient are presented in this section. Translational and 
rotational linear elastic springs along the slab edges defined the partial restraint. In addition to plate 
theory behavior, the model assumes linear elastic concrete and an infinitely long slab resting on a 
Winkler foundation. The solutions of curling stresses and displacements were validated using the 
FE method and quantified the effects of semirigid connections, slab and foundation material 
properties, and slab thickness and width. Rotational and translational restraints, which can be 
related to joint condition in concrete pavement, had significant influence on the magnitude and 
location of maximum curling stresses and deflections. In addition, Westergaard’s analysis, a 
particular case of the proposed solution when there is no restriction along the slab’s edges, resulted 
in the largest deflections at the center of the slab and the lowest maximum curling stresses. 
Adjustment factors that convert the theoretical findings from an infinitely long slab to a square 
slab are proposed. 
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3.1  STRUCTURAL MODEL, DEFLECTIONS, AND CURLING STRESSES 

Consider a slab extending to infinity along the x-direction, with width b along the y-direction, and 
thickness h, as shown in figure 1. The slab is made of linear elastic material with elastic modulus 
E, Poisson’s ration ν, and coefficient of thermal expansion α. The plate is supported by an elastic 
foundation with modulus of subgrade reaction k that does not allow separation. Furthermore, the 
slab is subjected to a linear temperature gradient, where the difference in temperature between the 
slab’s top and bottom is ΔT. 
 

 
 

Figure 1. Partially Restrained Infinitely Long Slab 

The vertical displacement and rotation along the edges parallel to the 𝑥𝑥-axis are restrained by linear 
elastic springs. Along the edge 𝑦𝑦 = 𝑏𝑏/2, the translational and rotational linear springs have a 
magnitude per unit length of 𝑆𝑆𝑎𝑎 and 𝜅𝜅𝑎𝑎, respectively. Similarly, 𝑆𝑆𝑏𝑏 and 𝜅𝜅𝑏𝑏 are the rotational and 
translational springs per unit length along the edge 𝑦𝑦 = −𝑏𝑏/2. Elastic constraints have the 
advantage of capturing the classical boundary condition. For instance, if 𝑆𝑆𝑎𝑎, 𝜅𝜅𝑎𝑎, 𝑆𝑆𝑏𝑏, and 𝜅𝜅𝑏𝑏 are 
zero, there is no restriction to movement, and the edges are free. Conversely, if the magnitude of 
the springs is very high, the edges are fully restrained, so they are clamped. Finally, if the edges 
are free to rotate and cannot displace, they are pinned. 
 
Assuming that the slab’s cross section before and after bending is a plane, ℎ is small compared to 
the other dimensions, and vertical strain is negligible, it can be found that for an infinitely long 
slab subjected to a linear temperature gradient, the bending moment with respect to the 𝑦𝑦-axis is 
the following (Timoshenko & Woinowsky-Krieger, 1959; Westergaard, 1927): 
 

 
𝑀𝑀𝑦𝑦  =  −

𝐸𝐸ℎ3

12(1− 𝜈𝜈2) �
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑦𝑦2 +

1 + 𝜈𝜈
ℎ Δ𝐿𝐿�  (1) 

 
The equilibrium of a differential element in the slab provides 𝑑𝑑2𝑀𝑀𝑦𝑦/𝑑𝑑𝑦𝑦2 = 𝑘𝑘𝑘𝑘, so the differential 
equation for the vertical deflection is as follows: 
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𝑙𝑙4
𝑑𝑑4𝑤𝑤
𝑑𝑑𝑦𝑦4 + 𝑤𝑤 =  0 (2) 

 
where 𝑙𝑙 = �𝐷𝐷/𝑘𝑘4  is the radius of relative stiffness and 𝐷𝐷 = 𝐸𝐸ℎ3/12/(1− 𝜈𝜈2) is the slab’s bending 
stiffness. Equations 1 and 2 were used by Westergaard (1927). The shear and bending moment per 
unit length along the partially restrained edges of the slab are as follows: 
 

 
𝑉𝑉 �

𝑏𝑏
2� = −𝑆𝑆𝑎𝑎𝑤𝑤 �

𝑏𝑏
2�  (3) 

 
𝑉𝑉 �−

𝑏𝑏
2� = 𝑆𝑆𝑏𝑏𝑤𝑤 �−

𝑏𝑏
2�  (4) 

 
𝑀𝑀�

𝑏𝑏
2� = 𝜅𝜅𝑎𝑎𝜃𝜃 �

𝑏𝑏
2� (5) 

 
𝑀𝑀�−

𝑏𝑏
2� = −𝜅𝜅𝑎𝑎𝜃𝜃 �−

𝑏𝑏
2� (6) 

 
The general solution of equation 2 is 
 

 𝑤𝑤(𝑦𝑦) = 𝐶𝐶1 cosh �
𝑦𝑦

𝑙𝑙√2  
� cos �

𝑦𝑦
𝑙𝑙√2  

�  

+ 𝐶𝐶2 cosh �
𝑦𝑦

𝑙𝑙√2  
� sin �

𝑦𝑦
𝑙𝑙√2  

�+ 𝐶𝐶3 sinh �
𝑦𝑦

𝑙𝑙√2  
� cos �

𝑦𝑦
𝑙𝑙√2  

�

+ 𝐶𝐶4 sinh �
𝑦𝑦

𝑙𝑙√2  
� sin �

𝑦𝑦
𝑙𝑙√2  

� 

(7) 

 
where 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, and 𝐶𝐶4 are constants found by solving the linear system of equations resulting 
from substituting 𝑤𝑤(𝑦𝑦) from equation 7 into the boundary conditions in equations 3-6. The solution 
for the slab’s vertical displacement is as follows: 
 

 
𝑤𝑤(𝑦𝑦) =

1
𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴)

(1 + 𝜈𝜈)𝛼𝛼Δ𝐿𝐿
ℎ 𝑙𝑙2 �𝑐𝑐1 cosh �

𝑙𝑙
√2
� cos �

𝑙𝑙
√2
�

+ 𝑐𝑐2 cosh �
𝑙𝑙
√2
� sin �

𝑙𝑙
√2
�+ 𝑐𝑐3 sinh �

𝑙𝑙
√2
� cos �

𝑙𝑙
√2
�

+ 𝑐𝑐4 sinh �
𝑙𝑙
√2
� sin �

𝑙𝑙
√2
�� 

(8) 

 
Appendix A presents the system of equations, its solution, and the expressions for 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 
and 𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴) as a function of 𝑅𝑅𝑎𝑎 = 𝜅𝜅𝑎𝑎𝑙𝑙/𝐷𝐷, 𝑅𝑅𝑏𝑏 = 𝜅𝜅𝑏𝑏𝑙𝑙/𝐷𝐷, 𝐿𝐿𝑎𝑎 = 𝑆𝑆𝑎𝑎𝑙𝑙3/𝐷𝐷, and 𝐿𝐿𝑏𝑏 = 𝑆𝑆𝑏𝑏𝑙𝑙3/𝐷𝐷. Once 
deflection is calculated, rotation, curvature, bending moment 𝑀𝑀𝑦𝑦 from equation 1, shear force, and 
stresses on top of the slab 𝜎𝜎𝑦𝑦 = 6𝑀𝑀𝑦𝑦/ℎ2 can also be computed using the deflection 𝑤𝑤(𝑦𝑦). The 
stresses in the 𝑦𝑦-direction are as follows: 
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𝜎𝜎𝑦𝑦 (𝑦𝑦)  = −

𝐸𝐸𝛼𝛼 Δ𝐿𝐿
2(1 − 𝜈𝜈) �1 −

1
𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴) �𝑐𝑐1 sin �

𝑙𝑙
√2
� sinh �

𝑙𝑙
√2
�

−  𝑐𝑐2 cos �
𝑙𝑙
√2
� sinh �

𝑙𝑙
√2
�+ 𝑐𝑐3 cosh �

𝑙𝑙
√2
� sin �

𝑙𝑙
√2
�

− 𝑐𝑐4 cos �
𝑙𝑙
√2
� cosh �

𝑙𝑙
√2
�� 

(9) 

 
In the case studied by Westergaard (1927), the infinitely long slab is free to displace and rotate 
along its edges (i.e., 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=0). Consequently, using the formulae in appendix A: 
 
 𝑐𝑐1

𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴) = 2 cosh 𝜆𝜆
sin 𝜆𝜆  − cos𝜆𝜆 tanh 𝜆𝜆

sinh 2𝜆𝜆 + cos 2𝜆𝜆  (10) 

 𝑐𝑐2
𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴) = 0 (11) 

 𝑐𝑐3
𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴) = 0 (12) 

 𝑐𝑐4
𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴) = −2 cosh 𝜆𝜆

sin 𝜆𝜆 + cos𝜆𝜆 tanh 𝜆𝜆
sinh 2𝜆𝜆 + cos 2𝜆𝜆  (13) 

 
So, the displacement becomes 
 

 𝑤𝑤(𝑦𝑦) = 𝛼𝛼Δ𝐿𝐿 (1

+ 𝜈𝜈)  
𝑙𝑙2

ℎ
2 cosh 𝜆𝜆

sinh 2𝜆𝜆 + cos 2𝜆𝜆 �
(sin 𝜆𝜆  

− cos 𝜆𝜆  tanh 𝜆𝜆) cosh
𝑦𝑦
𝑙𝑙√2

cos
𝑦𝑦
𝑙𝑙√2

− (sin 𝜆𝜆 + cos 𝜆𝜆  tanh 𝜆𝜆) sinh
𝑦𝑦
𝑙𝑙√2

sin
𝑦𝑦
𝑙𝑙√2

� 

(14) 

 
which can be reduced to 
 

 
𝑤𝑤(𝑦𝑦) = −𝛼𝛼Δ𝐿𝐿 (1 + 𝜈𝜈) 

𝑙𝑙2

ℎ
2 cosh 𝜆𝜆 cos𝜆𝜆

sinh 2𝜆𝜆 + cos 2𝜆𝜆 �
(− tan𝜆𝜆 + tanh𝜆𝜆) cosh

𝑦𝑦
𝑙𝑙√2

cos
𝑦𝑦
𝑙𝑙√2

+ (tan𝜆𝜆 + tanh𝜆𝜆) sinh
𝑦𝑦
𝑙𝑙√2

sin
𝑦𝑦
𝑙𝑙√2

� (15) 

 
Equation 15 matches the one reported by Westergaard (1927). 
 
3.2  EXAMPLE 

A typical rigid pavement is used to demonstrate the applicability and validity of the proposed 
solution. The concrete slab has elastic modulus 𝐸𝐸=28 MPa, coefficient of thermal expansion 
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𝛼𝛼=9×10^(-6) 1/°C, and Poisson’s ratio 𝜈𝜈=0.15. The slab rests on an elastic foundation with 
modulus of subgrade reaction 𝑘𝑘=0.0542 N/mm3; the slab’s thickness and width are h=200 mm 
and 𝑏𝑏= 4.0 m, respectively. The dowel bars have diameter and spacing of 31.8 and 305 mm, 
respectively. The dowel bars are made of steel with an elastic modulus of 200 GPa and a Poisson’s 
ratio of 0.30. In addition, the width of the joint is 6.35 mm; and the dowel-concrete interaction 
coefficient is 407.3 N/mm3 (Guo et al., 1995). The temperature on top of the slab is 10°C lower 
than that at the bottom. The objective is to calculate the deflection and curling stresses of the slab, 
assuming that (1) edges are free to rotate and displace (Westergaard case); and (2) one edge is 
elastically restrained as to rotation and translation with the dowel configuration described above, 
and the other edge adjoins a bridge abutment that provides no restriction to rotation or translation. 
 
The elastic constraint provided by the dowel system was calculated following the procedure 
proposed by Guo et al. (1995). The procedure calculates a stiffness matrix by dividing the dowel 
in three segments, two inside the concrete and one spanning the joint’s width. The stiffness matrix 
is given by the following: 
 
 

𝑺𝑺𝒄𝒄 = �𝑻𝑻𝟏𝟏 0
0 𝑻𝑻𝟐𝟐

� ��𝑰𝑰 0
0 𝑇𝑇� − �𝑲𝑲𝟏𝟏𝟏𝟏 + 𝑻𝑻𝟏𝟏 𝑲𝑲𝟏𝟏𝟐𝟐

𝑲𝑲𝟐𝟐𝟏𝟏 𝑲𝑲𝟐𝟐𝟐𝟐 + 𝑻𝑻𝟐𝟐
�
−1
�𝑻𝑻𝟏𝟏 0

0 𝑻𝑻𝟐𝟐
�� (16) 

 
where: 
 

 

𝑻𝑻𝟏𝟏 =
2𝛽𝛽2𝐸𝐸𝑑𝑑𝑇𝑇
𝐶𝐶12 + 𝑐𝑐12

�
2𝛽𝛽(𝑆𝑆1𝐶𝐶1 + 𝑠𝑠1𝑐𝑐1) −(𝑆𝑆12 + 𝑠𝑠12)

−(𝑆𝑆12 + 𝑠𝑠12)
𝑆𝑆1𝐶𝐶1 − 𝑠𝑠1𝑐𝑐1

𝛽𝛽
� (17) 

 

𝑻𝑻𝟐𝟐 =
2𝛽𝛽2𝐸𝐸𝑑𝑑𝑇𝑇
𝐶𝐶22 + 𝑐𝑐22

�
2𝛽𝛽(𝑆𝑆2𝐶𝐶2 + 𝑠𝑠2𝑐𝑐2) 𝑆𝑆22 + 𝑠𝑠22

𝑆𝑆22 + 𝑠𝑠22
𝑆𝑆2𝐶𝐶2 − 𝑠𝑠2𝑐𝑐2

𝛽𝛽
� (18) 

 
with 𝑆𝑆 = sinh𝛽𝛽𝐿𝐿, 𝐶𝐶 = cosh𝛽𝛽𝐿𝐿, 𝑠𝑠 = sin 𝛽𝛽𝐿𝐿, and 𝑐𝑐 = cos𝛽𝛽𝐿𝐿. Subscripts 1 and 2 represent the left 
and right segments, respectively, of the dowel bar that is embedded in the concrete; and 𝐿𝐿 
corresponds to the distance that is embedded in the slab. In addition, 𝛽𝛽 = [𝑘𝑘𝑏𝑏/(4𝐸𝐸𝑑𝑑𝑇𝑇)]0.25; 𝑘𝑘𝑏𝑏 is 
the product of the dowel-concrete interaction coefficient and the dowel diameter, 𝐸𝐸𝑑𝑑 is the elastic 
modulus of the dowel bar, and 𝑇𝑇 is the dowel bar’s moment of inertia. For the dowel characteristics 
in this example, 𝛽𝛽 =23.86 1/m. 
 
The terms 𝐾𝐾11, 𝐾𝐾12, 𝐾𝐾21, and 𝐾𝐾22 are defined by the segment of the dowel bar between slabs, as 
follows: 
 

 

𝑻𝑻𝟏𝟏 = �𝐾𝐾11 𝐾𝐾12
𝐾𝐾21 𝐾𝐾22

� =
𝐸𝐸𝑑𝑑𝑇𝑇

𝑙𝑙3(1 + 𝜙𝜙)
⎣
⎢
⎢
⎡

12 6𝑙𝑙𝑑𝑑𝑏𝑏
6𝑙𝑙𝑑𝑑𝑏𝑏 (4 + 𝜙𝜙)𝑙𝑙𝑑𝑑𝑏𝑏2

−12 6𝑙𝑙𝑑𝑑𝑏𝑏
−6𝑙𝑙𝑑𝑑𝑏𝑏 (2− 𝜙𝜙)𝑙𝑙𝑑𝑑𝑏𝑏2

−12 −6𝑙𝑙𝑑𝑑𝑏𝑏
6𝑙𝑙𝑑𝑑𝑏𝑏 (2 −𝜙𝜙)𝑙𝑙𝑑𝑑𝑏𝑏2

12 −6𝑙𝑙𝑑𝑑𝑏𝑏
−6𝑙𝑙𝑑𝑑𝑏𝑏 (4 + 𝜙𝜙)𝑙𝑙𝑑𝑑𝑏𝑏2 ⎦

⎥
⎥
⎤
     (19) 
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where 𝑙𝑙𝑑𝑑𝑏𝑏  is the length of the bar between slabs (i.e., the width of the joint), 𝜙𝜙 = 12𝐸𝐸𝑑𝑑𝑇𝑇/(𝑇𝑇𝐴𝐴𝑠𝑠𝑙𝑙2), 
and 𝐴𝐴𝑠𝑠 is the dowel’s cross-sectional area effective in shear. After replacing all the variables, the 
stiffness matrix (force in kN and distance in m) is as follows: 
 

 
𝑺𝑺𝒄𝒄 = �

11023.2 −194.8
−194.8 8.4

−11023.2 264.8
194.8 −9.6

−11023.2 194.8
264.8 −9.6

11023.2 −264.8
−264.8 11.3

� (20) 

 
The translational and rotational restraints per unit distance are obtained by dividing entries 11 and 
22 by the dowel-bar spacing: 𝑆𝑆𝑎𝑎=11023.3/0.305=36.1 N/mm/mm, and 𝜅𝜅𝑎𝑎=8.4/0.305=27533.1 
N.mm/mm/rad. 
 
An FE model with the same characteristics was created in the ABAQUS software (ABAQUS, 
2014). A slab three times longer than its width (i.e., 12.0-m long) represented infinite length. The 
model used square shell elements with a 32-mm side, four nodes, and Gauss quadrature for section 
integration. Elastic connectors with constants obtained by multiplying the magnitude per unit 
length and the length of the shell elements represented the elastic restraints. For instance, for the 
translational spring along edge 𝑎𝑎, 𝑆𝑆𝑎𝑎=36.1 N×mm/mm, so the input for ABAQUS is 
36.1 N×mm/mm×32.0 mm = 1156.5 N/mm. The foundation element modeled the Winkler 
foundation, and the linear temperature variation was specified using the temperature gradient 
through the slab thickness (0.05 °C/mm). 
 
The agreement between the proposed closed-form solution and the FE model is excellent, as is 
shown in figure 2. The figure presents the variation of the deflection and the curling stresses 
obtained from equations 8 and 9, respectively. The horizontal axis indicates the slab’s width, with 
𝑦𝑦=0 being the slab’s center, and the vertical axis representing the vertical deflection and curling 
stresses for top and bottom plots, respectively. The match was slightly better for deflection than 
for stresses. For instance, at the center of the slab, the differences in deflection for the free and the 
partially restrained slab were 3.1% and 2.7%, respectively. In contrast, the difference in stress was 
5.5% for the free slab, and 4.4% for the slab with semirigid connections. 
 
Asymmetrical behavior for the partially restrained slab can also be inferred from figure 2. Unequal 
semirigid connections along the slab’s edges caused the asymmetry. The maximum response is 
not at the center anymore, as for the free slab. On the contrary, the maximum is at 𝑦𝑦=247.6 mm 
for deflection and 𝑦𝑦=158.7 mm for curling stresses. The critical curling stresses increased by 13% 
for the elastically restrained slab, as compared to the Westergaard case. Similarly, curling stresses 
were equal to zero at the free edges; but they were neither zero nor equal for the elastically 
restrained slab. In fact, the curling stress is -0.974 MPa along edge 𝑎𝑎 (i.e., 𝑦𝑦=2.0 m) and  
-0.753 MPa along edge 𝑏𝑏 (i.e., 𝑦𝑦=-2.0 m). 
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Figure 2. Comparison Between Proposed Equations and ABAQUS 

Transitioning from a free to an elastically restrained slab affects the magnitude and variation of 
curling stresses and deflections along the slab’s width. The following section elaborates on the 
effect of semirigid connection on curling stresses and deflections for a broad range of scenarios. 
 
3.3  EFFECT OF SEMIGRID CONNECTIONS 

A parametric study was performed to evaluate the importance of the semirigid connections on 
curling stresses and deflections. The analyzed cases included 36 combinations of rotational and 
translational semirigid connections at edges 𝑎𝑎 and 𝑏𝑏 for a fixed ratio between the slab’s width and 
radius of relative stiffness. The ratio was 𝑏𝑏/𝑙𝑙  = 5, which is recommended by design procedures to 
reduce the likelihood of transverse cracking (Federal Highway Administration (FHWA), 1990). 
The restraint parameters—𝑅𝑅𝑎𝑎, 𝑅𝑅𝑏𝑏, 𝐿𝐿𝑎𝑎, and 𝐿𝐿𝑏𝑏—were 0, 1, and 100 each, respectively; 𝑅𝑅𝑎𝑎=0 
represents no restriction to rotation along edge 𝑎𝑎, while 𝑅𝑅𝑏𝑏=100 indicates full restriction. 
Theoretically, full restriction is given by 𝑅𝑅𝑎𝑎=∞, but preliminary analysis showed that the 
difference between 𝑅𝑅𝑎𝑎 =100 and 𝑅𝑅𝑎𝑎=∞ is insignificant. 
 
3.3.1  Deflection 

Figure 3 presents the deflection across the slab’s width for various combinations of boundary 
conditions. The vertical axis shows the normalized deflection 𝑤𝑤� = 𝑤𝑤/𝑤𝑤𝑑𝑑 with 
𝑤𝑤𝑑𝑑 = 𝛼𝛼Δ𝐿𝐿(1 + 𝜈𝜈)𝑙𝑙2/ℎ; the horizontal axis is the position along the slab’s width normalized with 
respect to the width, 𝑦𝑦� = 𝑦𝑦/𝑏𝑏. The normalized parameters for the translational restriction are fixed 
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in each subplot, and the six lines correspond to different combinations of the normalized 
parameters for rotational restriction.  
 

 
 

Figure 3. Effect of Semirigid Connections on Slab’s Deflection 

Rotational springs affected vertical deflection around the slab’s center more than did translation 
springs. On one hand, deflection was always zero when 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=100 regardless of the degree of 
translational restraint. On the other hand, no restriction to rotation resulted in the highest deflection 
around the center of the slab. As degree of rotational restriction increased, deflection gradually 
changed from the maximum value to zero. This result can be proved by comparing 𝑤𝑤� at the center 
of the slab for three cases. First, the normalized deflection is 0.419 when 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=0 
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(Westergaard case). Second, if the normalized rotational springs are changed to 𝑅𝑅𝑎𝑎=0 and 𝑅𝑅𝑏𝑏=100, 
𝑤𝑤� becomes 0.195, which is a 53% reduction. Third, if the rotational springs are maintained at zero, 
and 𝐿𝐿𝑎𝑎=0 and 𝐿𝐿𝑏𝑏=100, the normalized deflection is 0.382, a decrement of only 8.8%, as compared 
to the Westergaard case. These results are the consequence of bending being the main deformation 
mechanism of slabs. 
 
Even though translational springs were less relevant than rotational ones for deflection, the 
difference between 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏 determines if Westergaard’s solution is conservative. As mentioned 
above, maximum 𝑤𝑤� for free edges was 0.419. The magnitude of 𝑤𝑤� for the free case is smaller than 
0.434, which corresponds to 𝐿𝐿𝑎𝑎=0 and 𝐿𝐿𝑏𝑏=100 (highest difference between translational springs). 
However, if 𝐿𝐿𝑎𝑎=100 and 𝐿𝐿𝑏𝑏=100, then 𝑤𝑤�=0.365, which is smaller than that for the free case. 
Consequently, regarding deflection, Westergaard is more conservative if there is high translational 
restriction at the edges of the slab; but it is not conservative if the difference between 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏 is 
large. 
 
Semirigid connection also affects the location of maximum deflection. As would be expected, the 
largest deflection occurred at the center of the slab only if the boundary conditions were symmetric 
(i.e., 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏 and 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏). The difference between deflection at the center and maximum deflection 
can be significant. The highest ratio between maximum deflection and deflection at the center was 
1.89 for 𝐿𝐿𝑎𝑎=100, 𝐿𝐿𝑏𝑏=100, 𝑅𝑅𝑎𝑎=0, and 𝑅𝑅𝑏𝑏=100. The difference between the normalized rotational 
springs was the controlling factor for the discrepancy between maximum deflection and deflection 
of the slab’s center. 
 
3.3.2  Curling Stresses 

Figure 4 presents the curling stresses along the slab’s width. As for deflection, the horizontal axis 
is the ratio between the transverse location and the slab’s width. The vertical axis indicates the 
stresses normalized with respect to the stress for a fully restrained slab 𝜎𝜎𝑑𝑑 = 𝐸𝐸𝛼𝛼 Δ𝐿𝐿/2/(1− 𝜈𝜈). 
The arrangement of the plots regarding the semirigid connections is the same as in figure 3. 
 
Figure 4 confirms the expected behavior for extreme values of 𝑅𝑅𝑎𝑎 and 𝑅𝑅𝑏𝑏. First, whenever the 
rotational restrictions were zero (i.e., 𝑅𝑅𝑎𝑎=0 or 𝑅𝑅𝑏𝑏=0), the curling stresses along the corresponding 
edge were zero. On the contrary, if the restriction along both edges is high (i.e., 𝑅𝑅𝑎𝑎=100 and 
𝑅𝑅𝑏𝑏=100), the curvature of the slab is unchanged, so the stresses were constant and equal to 
𝐸𝐸𝛼𝛼Δ𝐿𝐿/2/(1− 𝜈𝜈), as indicated by 𝜎𝜎�=1. The result holds for any combination of translational 
springs because the deflection is zero when 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=100 regardless of 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏. 
 
The ratio 𝜎𝜎� along the edges was affected differently by the translational and rotational connections. 
As the translational restraint increased, the ratio decreased. For instance, for 𝑅𝑅𝑎𝑎=0 and 𝑅𝑅𝑏𝑏=1, if 
𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=0, 𝜎𝜎�=0.631 at 𝑦𝑦/𝑏𝑏=-0.50. In contrast, if 𝐿𝐿𝑎𝑎 is kept at zero and 𝐿𝐿𝑏𝑏 is increased to 1, the ratio 
decreases by 14% to 0.545. The curling-stress ratio would decrease an extra 16% to 0.462 if 𝐿𝐿𝑏𝑏 
changes from 1 to 100. On the contrary, as the degree of rotational restriction increased, 𝜎𝜎� would 
be raised as well. If 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=1, 𝜎𝜎�=0.532 at edge −𝑏𝑏/2 when 𝑅𝑅𝑎𝑎=0 and 𝑅𝑅𝑏𝑏=1, which is higher than 
the ratio when the edge is free to rotate (𝜎𝜎�=0 when 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=0) and smaller than when the edge is 
fully restrained as to rotation (𝜎𝜎�=1.05 when 𝑅𝑅𝑎𝑎=0 and 𝑅𝑅𝑏𝑏=100). 
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Figure 4. Effect of Semirigid Connections on Stresses  

The variation of the curling stresses with respect to semirigid connections along the center of the 
slab is different than along the edges. Considering the same cases as in the previous paragraphs, 
for 𝑅𝑅𝑎𝑎=0 and 𝑅𝑅𝑏𝑏=0, if 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=0, 𝜎𝜎�=0.713 at 𝑦𝑦/𝑏𝑏=0. The ratio is raised to 0.816 if the dimensionless 
translational spring along edge 𝑎𝑎 is maintained at 0 and increased to 1 along edge −𝑏𝑏/2. If 𝐿𝐿𝑏𝑏 is 
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raised to 100 and 𝐿𝐿𝑎𝑎=0, 𝜎𝜎�=0.886. In other words, when both edges are free to rotate, curling 
stresses at the center of the slab increase 24% between free and full-translational restraint; and 
most of the increment occurs between 𝐿𝐿𝑏𝑏=0 and 𝐿𝐿𝑏𝑏=1. Taking Westergaard’s case as a reference, 
the influence of rotational springs can also be inferred. If 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏 are kept at zero, 𝜎𝜎� changes 
from 0.713 to 0.804 if 𝑅𝑅𝑏𝑏 is changed from 0 to 1 and 𝑅𝑅𝑎𝑎=0 is held constant (13% increment). In 
addition, if 𝑅𝑅𝑏𝑏 becomes 100, the ratio increases by 8% to 0.867. In general, the influence of 
rotational and translational springs on curling stresses at the center of the slab decreases as the 
edge restrictions became greater. 
 
From a practical perspective, the observations above highlight the relevance of properly 
characterizing the load-transfer efficiency when calculating curling stresses, not only of the shear 
force but also of the bending moment between concrete slabs. The Westergaard case predicts the 
lowest curling stresses, which means the free-edge assumption is not conservative and can result 
in premature deterioration of concrete pavements.  
 
3.4  CURLING STRESSES AND b/L RATIO 

The influence of semirigid connections on curling stresses also depends on geometry and material 
properties. These variables are encompassed in the ratio 𝑏𝑏/𝑙𝑙, which depends not only on the slab’s 
thickness, width, and material properties, but also on the modulus of subgrade reaction. In addition, 
design guidelines recommend limiting 𝑏𝑏/𝑙𝑙 to 5 to reduce transverse cracking (FHWA, 1990). 
Figure 5 shows the relevance of 𝑏𝑏/𝑙𝑙 on curling stresses; it shows the variation of the normalized 
maximum curling stress  𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 = 𝜎𝜎𝑚𝑚𝑎𝑎𝑚𝑚 /𝜎𝜎𝑑𝑑 for a wide range of 𝑏𝑏/𝑙𝑙 and the same values of the 
semirigid connections as in figures 3 and 4. 
 
Large 𝑏𝑏/𝑙𝑙 ratios suggest the smallest effect of boundary conditions on curling stresses. For every 
combination of 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏, the largest 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 at 𝑏𝑏/𝑙𝑙=10 was found for 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=100. Specifically, 
when 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=100 and 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=0, the maximum curling stresses are 6.6% higher than 𝜎𝜎𝑑𝑑. Large 𝑏𝑏/𝑙𝑙 
represents very long slabs, where the maximum curling stresses are obtained by assuming full 
restriction at the edges, thus explaining the minimal effect of boundary conditions on 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚. 
 
In general, as the degree of translational restriction increased, 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 raised and the corresponding 
𝑏𝑏/𝑙𝑙 decreased. For instance, if 𝐿𝐿𝑎𝑎 is fixed at zero and 𝐿𝐿𝑏𝑏 is changed among 0, 1, and 100, the ratio 
between the maximum curling stress and 𝜎𝜎𝑑𝑑 is 1.079, 1.127, and 1.240, respectively. Furthermore, 
the value of 𝑏𝑏/𝑙𝑙 at each maximum decreased: 𝑏𝑏/𝑙𝑙=4.45 for 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚=1.079, 𝑏𝑏/𝑙𝑙=3.90 for 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚=1.127, 
and 𝑏𝑏/𝑙𝑙=3.35 for 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚=1.240. The highest ratio, 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚=1.431, requires three conditions: 
𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=100, the difference between rotational springs at both edges was the highest (𝑅𝑅𝑎𝑎=0 and 
𝑅𝑅𝑏𝑏=100), and 𝑏𝑏/𝑙𝑙=1.65. In summary, special attention should be given to load-transfer-efficiency 
assessment when calculating curling stresses of short slabs. The only case with no influence of 
translational restriction on 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 is when edge rotation is fully restrained (i.e., 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=100), in 
which case the ratio is one. 
 
Edge conditions where rotation and/or displacement are either free or fully restrained can result in 
under- or overprediction of 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 , depending on the magnitude of 𝑏𝑏/𝑙𝑙. The 𝑏𝑏/𝑙𝑙 changes with 𝐿𝐿𝑎𝑎 and 
𝐿𝐿𝑏𝑏, being the highest for 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=0, and the lowest for 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=100. Similarly, if rotation is fully 
restrained (i.e., 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=100), three ranges were identified. First, if 𝑏𝑏/𝑙𝑙 was sufficiently small, 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 



 

16 

was the highest among all values of 𝑅𝑅𝑎𝑎 and 𝑅𝑅𝑏𝑏. Second, for intermediate 𝑏𝑏/𝑙𝑙, 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 was higher 
than any case with one edge not fully restrained as to rotation. Third, for high 𝑏𝑏/𝑙𝑙 magnitudes, full 
rotational restriction provided the smallest 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚. 
 

 
 

Figure 5. Effect of Ratio Between a Slab’s Width and Radius of Relative Stiffness on  
Maximum Stresses 
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Even though design guidelines restrict 𝑏𝑏/𝑙𝑙 to 5, the effect of the rotational springs on the 
normalized maximum curling stress is highly sensitive to the ratio between the slab’s width and 
the radius of relative stiffness if 𝑏𝑏/𝑙𝑙< 5. For instance, if 𝐿𝐿𝑎𝑎=𝐿𝐿𝑏𝑏=1 and 𝑏𝑏/𝑙𝑙 =3.5, the maximum and 
minimum 𝜎𝜎�𝑚𝑚𝑎𝑎𝑚𝑚 are 1.143 and 0.546, respectively, a difference of 0.597. If 𝑏𝑏/𝑙𝑙 is changed to 4.0, 
the maximum is 1.120, and the minimum changes to 0.679, which represents a difference of 0.441, 
27% smaller than for 𝑏𝑏/𝑙𝑙 =3.5. 
 
3.5  ADJUSTMENT FACTOR FOR SQUARE SLAB 

Because the presented solution assumes an infinitely long slab, an adjustment factor (𝐴𝐴𝐶𝐶) is 
proposed to modify the maximum stresses for a square slab. First, the maximum curling stress for 
the infinitely long slab was calculated using equation 9, while for the square slab it was obtained 
using the FE model. 𝐴𝐴𝐶𝐶 is defined as the ratio between the maximum curling stress of the square 
slab over the one calculated using equation 9. 𝐴𝐴𝐶𝐶 was calculated for 720 cases that resulted from 
the combination of (1) six rotational springs pairs (𝑅𝑅𝑎𝑎=0 – 𝑅𝑅𝑏𝑏=0, 𝑅𝑅𝑎𝑎=0 – 𝑅𝑅𝑏𝑏=1, 𝑅𝑅𝑎𝑎=0 – 𝑅𝑅𝑏𝑏=100, 
𝑅𝑅𝑎𝑎=1 – 𝑅𝑅𝑏𝑏=1, 𝑅𝑅𝑎𝑎=1 – 𝑅𝑅𝑏𝑏=100, and 𝑅𝑅𝑎𝑎=100 – 𝑅𝑅𝑏𝑏=100); (2) six translational spring pairs (𝐿𝐿𝑎𝑎=0 – 
𝐿𝐿𝑏𝑏=0, 𝐿𝐿𝑎𝑎=0 – 𝐿𝐿𝑏𝑏=1, 𝐿𝐿𝑎𝑎=0 – 𝐿𝐿𝑏𝑏=100, 𝐿𝐿𝑎𝑎=1 – 𝐿𝐿𝑏𝑏=1, 𝐿𝐿𝑎𝑎=1 – 𝐿𝐿𝑏𝑏 =100, and 𝐿𝐿𝑎𝑎=100 – 𝐿𝐿𝑏𝑏=100); (3) 
four moduli of subgrade reaction (𝑘𝑘=0.01, 0.05, 0.1, and 0.02 N/mm3); and (4) five thicknesses 
(ℎ=100, 200, 300, 400, and 500 mm). Figure 6 presents the variation of 𝐴𝐴𝐶𝐶 with 𝑏𝑏/𝑙𝑙.  
 
Two zones can be distinguished when analyzing the effect of 𝑏𝑏/𝑙𝑙 on 𝐴𝐴𝐶𝐶. First, as expected, the 
wider the slab (large 𝑏𝑏/𝑙𝑙) the smaller the difference between square and infinite geometries. 𝐴𝐴𝐶𝐶 
for relatively large 𝑏𝑏/𝑙𝑙 is not exactly one due to numerical differences between the FE and the 
analytical solution. It is also noted that 𝐴𝐴𝐶𝐶 ≈ 1 requires a significant 𝑏𝑏/𝑙𝑙, approximately 7 or 
larger. Second, 𝐴𝐴𝐶𝐶 has a wide variation when 𝑏𝑏/𝑙𝑙<7, where 𝐴𝐴𝐶𝐶 can reach values higher than 2 and 
as low as zero.  
 
Considering the case 𝑏𝑏/𝑙𝑙=5, which is recommended in rigid-pavement design, three main 
observations can be made. First, for all combinations of 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏, the effect of rotational springs 
can be divided into two groups: when 𝑅𝑅𝑏𝑏 = 100, 𝐴𝐴𝐶𝐶 is high; and when 𝑅𝑅𝑏𝑏 ≠ 100, 𝐴𝐴𝐶𝐶 is low. 
Second, the smallest quotient between the minimum and maximum 𝐴𝐴𝐶𝐶 is 1.11 when 𝐿𝐿𝑎𝑎 =𝐿𝐿𝑏𝑏=0. 
Third, the slab fully restrained against translation (i.e., 𝐿𝐿𝑎𝑎 =𝐿𝐿𝑏𝑏=100) results in the largest change 
in 𝐴𝐴𝐶𝐶; it is 0.35, a 42% increment.  
 
The influence of rotational and translational springs on 𝐴𝐴𝐶𝐶 is interconnected. As explained, for 
𝑏𝑏/𝑙𝑙 =5, the lines corresponding to 𝑅𝑅𝑏𝑏=100 tended to be close for all 𝐿𝐿𝑎𝑎–𝐿𝐿𝑏𝑏 combinations; however, 
the lines did not always represent high 𝐴𝐴𝐶𝐶, mainly for low 𝑏𝑏/𝑙𝑙. Changes in translational springs 
are associated with changes in the magnitude of the lines, while variations of the rotational springs 
change the shape of the lines. Figure 6 also shows that the only case providing adjustment factors 
smaller than one is when 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏=0. Hence, the infinite slab always provides smaller values than 
the square one if slab edges are free to rotate. In general, whether or not the infinite-slab 
assumption is conservative depends on 𝑏𝑏/𝑙𝑙 and the semirigid connections. 
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Figure 6. Effect of Semirigid Connections on Adjustment Factor for Square Slab 

3.6  SUMMARY 

A closed-form solution for curling responses of slab-on-subgrade rigid pavement considering 
generalized boundary conditions was derived using plate theory. The derivation adopted the 
assumptions of the classical work of Westergaard except for the condition of the slab’s edges, 
which were partially restrained as to displacement and rotation by linear elastic springs. After 
validation of the solution using the FE method, the equations quantified the effect of edge 
restrictions on curling stresses and displacements for a wide range of material properties and 
geometries. To implement the closed-form solution to real-life cases, adjustment factors were 
calculated to link curling stresses of an infinitely long slab and a square slab. 
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Comparison with the FE method showed a difference of approximately 5% for stresses and 
displacements, with slightly better agreement for displacements. It was found that the elastic 
restraints affect the magnitude and location of maximum deflection, with rotational springs having 
more influence than translational ones at the slab’s center. In addition, for small ratios between the 
slab’s width and radius of relative stiffness, semirigid conditions greatly affect the quotient 
between the maximum curling stresses and the curling stresses of a fully restrained slab. Finally, 
maximum curling stresses in square slabs are usually higher than those for an infinitely long slab; 
the difference heavily depended on the boundary conditions and 𝑏𝑏/𝑙𝑙 ratio. This study also presents 
an adjustment factor for the currently used approach to analyze maximum curling stresses in rigid 
pavement with square slabs.  
 
The results show that Westergaard analysis is not conservative, and that the degree of relevance of 
the semirigid connections depends on material properties and geometry. More generally, when 
performing curling analysis, it is imperative to assess and quantify the joints’ condition and their 
ability to transfer shear force and bending moment. 
 
4.  JOINT ROTATION AND CURLING RESPONSES IN AIRFIELD RIGID PAVEMENT 

This section quantifies the relevance of restriction to joint rotation of an airfield concrete pavement 
when calculating critical curling stresses and deflections using a validated FE model. The 
validation used strains measured at the John F. Kennedy International Airport (JFK). To calculate 
critical curling stresses and deflections, the pavement was subjected to 5,263 hours of temperature 
as determined by utilizing the EICM and thermocouple readings. The profiles included a wide 
range of average temperatures, temperature gradients, and temperature nonlinearity. Three 
conditions were included: (1) joints free to displace and rotate, (2) joints free to rotate but partially 
restrained as to vertical displacement, and (3) joints partially restrained as to vertical displacement 
and rotation. The differences in critical stresses between the second and third conditions were 
higher than 5% in 70% of the hours. In addition, critical deflections were lower when considering 
the rotational restriction; 80% of the difference with respect to the free case was caused by 
rotational restriction. As a conclusion, joint rotation intensifies the influence of curling stresses 
and deflections on long-term performance of airfield rigid pavement. 
 
4.1  FINITE ELEMENT MODEL DESCRIPTION 

The FE model of a rigid pavement at JFK was created using the general-purpose FE software 
ABAQUS. The section was instrumented with pressure cells, strain gauges, and thermocouples 
(Garg et al., 2013). The pavement is composed of four layers: 500-mm-thick PCC slab, 100-mm-
thick plant-mix macadam, 150-mm-thick dense-graded aggregate base (DGAB), and subgrade. 
The materials were assumed linear elastic, elastic modulus for the PCC, macadam, DGAB, and 
subgrade were 38,852; 2,000; 300; and 30 MPa, respectively. These values were provided by the 
FAA based on laboratory testing and typical values from other airfield pavement sections. The 
coefficient of thermal expansion for the PCC was 5.0×10-6 mm/mm/°F. 
 
The three-dimensional FE model included special features regarding mesh, interaction between 
layers, and slab connectivity (see figure 7). The 7.6-m-long square PCC slab was meshed with 
four-node shell elements. The macadam and DGAB extended to infinity in the 𝑥𝑥𝑘𝑘-plane; these 
layers were meshed with two types of elements: eight-node linear brick and infinite elements on 
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the boundaries. The subgrade extended to infinity along the three perpendicular directions. The 
interaction between layers was defined by a friction coefficient of 1.5 between the PCC and the 
macadam that allowed separation and a friction coefficient of 1.0 for the other interactions (Huang, 
2004; Yoo et al., 2006). Finally, elastic rotational and translational springs connected the PCC slab 
to surrounding media. As discussed in section 3, the springs’ magnitude controls the transfer of 
displacement and rotation among slabs. For instance, translational springs with very large 
magnitude represent full transfer of vertical displacement. If vertical displacement is not 
transferred from one slab to the other, the constant of the vertical spring is zero. Similar reasoning 
can be applied to rotational springs and a slab’s bending.  
 

  
(a)                                                                             (b) 

 
Figure 7. Three-Dimensional FE Model in ABAQUS (a) With Detail of the  

Boundary Conditions (b) 

4.2  MESH-SENSITIVITY ANALYSIS 

Variation of longitudinal and transverse stresses through the slab’s depth determined the optimal 
size of shell elements. Five mesh configurations with 9, 27, 81, 243, and 486 elements along the 
edge were considered; these are equivalent to 81; 729; 6,561; 59,049; and 236,196 finite elements 
in the slab. Arrays storing the stresses at 11 section points through the slab’s center, edge, and 
corner were compared, using the finest mesh as benchmark. The analysis showed that elements 
smaller than 281 mm were appropriate, so a 200-mm element size was selected. 
 
4.3  TEMPERATURE PROFILES 

A modified version of the EICM, calibrated with experimental measurements, predicted 
temperature profiles within the concrete slab. EICM is a one-dimensional model that simulates 
heat and moisture flow within pavement structures; it is currently used by the Mechanistic-
Empirical Pavement Design Guide (MEPDG) (ARA-ERES, 2014) to incorporate climate and 
environment. The main components of EICM are the climate–materials–structural model, frost-
heave and settlement model, and infiltration-drainage model (Lytton et al., 1993). One of the most 
recent implementations of EICM is the software ILLI-THERM (Sen & Roesler, 2016). ILLI-
THERM works on the same algorithms as EICM but excludes the infiltration-drainage model. 
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ILLI-THERM requires multiple user inputs (e.g., thermal conductivity, heat capacity, porosity) 
that need to be calibrated to produce realistic temperature profiles. 
 
A Bayesian framework was adapted to perform the calibration in this study (Kennedy & O’Hagan, 
2001). The framework optimized unknown material parameters to match ILLI-THERM’s output 
and temperature measurements in the JFK section. After calibration, posterior distributions for 
each parameter provided insights about the significance of the input parameters. The adaptive 
Metropolis algorithm, an adaptive Monte Carlo Markov chain, was used to select samples to 
approximate the posterior distributions (Haario et al., 2001). In total, 309 samples were accepted 
from 5,000 simulations. The calibration improved the performance of ILLI-THERM by reducing 
the root mean square error (RMSE) by 15 %.  
 
Calculated temperature profiles covered a wide range of average temperatures, temperature 
gradients, and temperature nonlinearity. The average temperature, the mean of temperatures across 
the slab’s depth for every hour, varied between 35°F and 85°F. The temperature gradient, or 
difference between the temperature on the top and bottom of the slab, covered magnitudes between 
-20°F and 15°F. Finally, the nonlinear area parameter (NOLA) quantified the temperature profile’s 
nonlinearity and varied between -3.81°F×mm and 1.9°F×mm (Hiller & Roesler, 2010). 
 
4.4  MODEL VALIDATION 

Comparison between measured and predicted strains at the bottom of the slab validated the FE 
model. Instrumented airfield rigid pavement at JFK provided measured strains (Garg et al., 2013); 
the measurements corresponded to the average of four readings during two testing periods, April 
and May 2011. The four readings were obtained from strain gauges located close to each corner 
of the slab: 1.5 m from the longitudinal joints and 0.25 m from the transverse ones. The predicted 
values resulted from the FE model subjected to the calculated hourly temperature profiles. Three 
conditions were simulated: In condition 1 (C1), the joints were free to displace and rotate; in 
condition 2 (C2), the joints were free to rotate, but displacements in the vertical direction were 
partially restrained; in condition 3 (C3), partial restriction as to vertical displacement and rotation 
along the joints was imposed. 
 
Figure 8 compares the measurements and predictions for both testing periods. The responses used 
for validation were not highly sensitive to edge condition; however, as shown in sections 4.5 and 
4.6, critical tensile stress and deflection were indeed affected by boundary condition. The RMSE 
varied between 10.3 and 14.4 microstrains, which corresponds to a variation of 3.8% and 5.2% 
from the average measurement, respectively. After validation, temperature profiles for seven 
additional testing periods were analyzed by the FE model. The seven testing periods are January, 
February, March, April, July, August, and December 2012. A total of 5,263 hours of temperature 
variations were modeled, and hourly critical tensile stress and deflection were analyzed. 
 
4.5  CRITICAL TENSILE STRESSES 

The critical tensile stress was defined as the highest tensile stress for all the sections’ points of the 
shell elements in the concrete slab at a specific hour. Figure 8 shows the variation of the critical 
tensile stress for C2 and C3 with respect to C1 (𝜎𝜎𝑐𝑐,𝐶𝐶1, 𝜎𝜎𝑐𝑐,𝐶𝐶2, and 𝜎𝜎𝑐𝑐,𝐶𝐶3, respectively). The solid line 
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represents cases where tensile stresses are equal to the critical stresses of C1; points above the 
equality line indicate conditions where the critical stress is higher than for the free condition. 
 
As expected, assuming free boundaries along the joints did not result in a conservative analysis, 
as demonstrated by the cloud of points above the equality line. The free assumption provided the 
lowest tensile stresses among the three conditions; no stress ratio with respect to 𝐶𝐶1 was lower 
than 0.94, which happened in July 2012. The cloud of points also shows a value for the stress in 
C1 around 0.7 MPa, from which there was no significant difference between 𝜎𝜎𝑐𝑐,𝐶𝐶1 and 𝜎𝜎𝑐𝑐,𝐶𝐶2. For 
instance, in May 2011, the average stress ratio between 𝜎𝜎𝑐𝑐,𝐶𝐶2 and 𝜎𝜎𝑐𝑐,𝐶𝐶1 was 1.02 when the stress 
was higher than 0.7 MPa. When 𝜎𝜎𝑐𝑐,𝐶𝐶1 was lower than 0.7 MPa, the average ratio was 1.55. The 
other testing periods displayed similar behavior, where the average stress ratio when 𝜎𝜎𝑐𝑐,𝐶𝐶1 >0.7 
MPa varied from 1.01 to 1.08, and for 𝜎𝜎𝑐𝑐,𝐶𝐶1 <0.7 MPa varied between 1.33 and 1.62. 
Consequently, for the studied pavement structure, the stresses calculated assuming free condition 
and partial restriction as to vertical displacement are equivalent if 𝜎𝜎𝑐𝑐,𝐶𝐶1 >0.7 MPa. The cloud of 
points in figure 9 also shows stresses enclosed between two lines, one being the equality line and 
the other one the equality line plus 0.35 MPa. In other words, adding 0.35 MPa to the critical stress, 
assuming free edges, results in a conservative estimation of critical tensile stresses for the studied 
pavement with partially restrained edges. 
 

 
 

Figure 8. Comparison Between Measured and Calculated Corner Strain at the Bottom of the Slab 
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Figure 9. Variation of Critical Tensile Stresses for C2 and C3 With Respect to C1 

The stress range was always higher for C3 than for C2. The largest range of stresses was observed 
for the testing period with the lowest temperatures: January 2012. During that period, the stress 
range for 𝜎𝜎𝑐𝑐,𝐶𝐶3 was 1.72 MPa, while that for 𝜎𝜎𝑐𝑐,𝐶𝐶2 was 1.39 MPa. This discrepancy is caused by 
the additional restraint to rotation in C3, which creates more stresses during temperature changes. 
 
Figure 10 presents the distribution of the ratios of critical tensile stresses between 𝜎𝜎𝑐𝑐,𝐶𝐶3 and 𝜎𝜎𝑐𝑐,𝐶𝐶2. 
The only difference between the two conditions is the partial restriction to rotation in C3; the 
rotational restriction’s relevance increases as the ratio departs from 1. The horizontal axis indicates 
ranges for the tensile-stress ratio, and the vertical axis is the percentage of events when the ratio 
falls in the corresponding range. For instance, in December 2012, the second bar indicates that the 
ratio of the critical stresses varied between 0.65 and 0.75 in 6.5% of the hours measured during 
December 2012. The restraint to rotation along the slab joints significantly affected the critical 
tensile stresses. First, the percentage of events with ratios between 0.95 and 1.05 (i.e., 5% 
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difference, or small impact) varied between 20.7% for December 2012 and 36.5% for March 2012. 
In contrast, the ratio was larger than 1.05 or lower than 0.95 in 70% of the cases for all the other 
testing periods.  
 

 
 

Figure 10. Distribution of Ratio Between Critical Tensile Stresses for C3 With Respect to C2 

Temperature also influenced the impact of rotational restraint. The percentage of events when 
𝜎𝜎𝑐𝑐,𝐶𝐶3 is lower than for 𝜎𝜎𝑐𝑐,𝐶𝐶2 is higher for colder temperatures. In January 2012, 42.6% of the events 
showed ratios lower than 0.95. Similarly, the percentage of events with ratios lower than 0.95 was 
52.7% and 50.0% in February 2012 and December 2012, respectively. For the same two periods, 
𝜎𝜎𝑐𝑐,𝐶𝐶3/𝜎𝜎𝑐𝑐,𝐶𝐶2 was higher than 1.05 in 23.1% and 29.2% of the cases. For all the other testing periods, 
the situation was the opposite. The highest difference occurred in July 2012, when 46.6% of the 
events had ratios larger than 1.05 and 23.8% had ratios lower than 0.95.  
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December 2012 provided the highest percentage of cases with a difference of more than 25%: 
𝜎𝜎𝑐𝑐,𝐶𝐶3/𝜎𝜎𝑐𝑐,𝐶𝐶2 was higher than 1.25 in 23.8% and lower than 0.75 in 14.5% of the cases. However, 
having a large difference between critical stresses for C2 and C3 is not associated with low 
temperature. The other two periods with low temperatures, January 2012 and February 2012, did 
not have ratios above 1.25 and below 0.75 as significant as those of December 2012. 
 
4.6  CRITICAL DEFLECTION 

The critical deflection was defined as the difference between deformed coordinates at the corner 
and center of the slab with respect to the initial configuration of the corresponding testing period. 
Only values with positive curvature were analyzed because they contribute to faulting. The 
variation of the critical deflection for C2 and C3 with respect to C1 is presented in figure 11. The 
solid black line represents the critical deflection when there is no restriction as to vertical 
displacement and rotation (𝛿𝛿𝑐𝑐1) (i.e., equality line); green squares correspond to points when the 
slab edges are partially restrained as to vertical displacement (𝛿𝛿𝑐𝑐2); and blue circles are the critical 
deflection when both the vertical displacement and rotation are partially restrained (𝛿𝛿𝑐𝑐3). 
 

 
 

Figure 11. Variation of Critical Deflection for C2 and C3 With Respect to C1 
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The difference between C1 and C2 is smaller than the difference between C1 and C3, which 
indicates that rotational restriction’s role in faulting is more relevant than restriction as to vertical 
displacement. The difference in slope of a linear regression of the cloud of points quantifies such 
relevance. The average slope for all testing periods for C2 and C3 were 0.944 and 0.738, 
respectively. In other words, restriction as to displacement causes 20% of the difference between 
the most restrained scenario and the free condition, while the other 80% is caused by the partial 
restriction as to rotation. 
 
Even though it is expected that as the degree of restriction increases the vertical deflections 
decrease, summer months provided higher deflection for C2 with respect to C1. More specifically, 
for testing periods July 2012 and August 2012, 𝛿𝛿𝑐𝑐2 was higher than 𝛿𝛿𝑐𝑐1 in 94% and 62% of the 
cases, respectively. In contrast, instances when 𝛿𝛿𝑐𝑐3 was higher than 𝛿𝛿𝑐𝑐1 are rare. The highest 
percentage of events where the slab was partially restrained as to vertical deflection and rotation 
provided higher faulting deflections, 7.5% during the testing period July 2012.  
 
4.7  SUMMARY 

The validated FE model of an airfield rigid pavement showed the relevance of slab joints’ rotation 
on critical curling stresses and deflections. The validation used strain measurements from JFK 
during April and May 2011. The model included 5,263 hours of temperature profiles determined 
using thermocouple readings and the EICM.  
 
Three joint conditions quantified the impact of the restriction as to rotation. The results revealed 
that joint rotation affects the critical curling stresses and deflections. In the case of critical curling 
stresses, partially restraining joint rotation resulted in significant difference in 70% of the cases. 
For critical deflection, 80% of the difference between the free condition and the most restrained 
case is caused by the partial rotational restraint, while 20% is caused by the partial restriction as 
to vertical displacement. Finally, calculations assuming free joints can provide initial estimation 
of critical curling responses for other joint conditions. In summary, joint rotation significantly 
affects both critical stresses and deflections; and it should be included in the long-term 
performance analysis of airfield rigid pavement. 
 
5.  BLOWUP ANALYSIS 

Analytical expression for static stability of a rectangular slab with two simply supported and two 
elastically restrained edges is presented in this section. The linear elastic isotropic slab, which can 
represent a rigid pavement, rested on an elastic foundation and was loaded by a uniform in-plane 
axial load per unit length along the edges. The partially restrained edges are connected to the 
ground by translational and rotational elastic springs; an appropriate magnitude of the springs can 
capture classical boundary conditions such as free, simply supported, and clamped edges. Results 
from classical boundary conditions and an FE model were used to validate the proposed stability 
equation. The generalized boundary conditions were found to change the critical load by a factor 
of two and greatly affected the first buckling-mode shape of a typical concrete pavement. The 
critical load was not sensitive to the slab’s geometry if the length was four times longer than the 
width, but this is not the case for small aspect ratios. Finally, the translational spring was found to 
be a defining factor in determining the influence of the other variables on the critical load. 
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5.1  STRUCTURAL MODEL AND STABILITY EQUATION 

Consider a slab of length 𝐿𝐿 and width 2𝑏𝑏𝐿𝐿 (aspect ratio = 2𝑏𝑏) made of a linear elastic material with 
elastic modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈. The slab, whose thickness ℎ is small compared to the 
shortest plan dimension, is supported on an elastic foundation with modulus of subgrade reaction 
Λ. The origin of the coordinate system is located at the midpoint of the left-hand-side edge of the 
slab, with the 𝑥𝑥′- and 𝑦𝑦′-axes pointing along the length and width of the slab, respectively, as 
shown in figure 12. 
 

 
 

Figure 12. Rectangular Slab With Two Simply Supported Edges and Two Elastically  
Restrained Edges 

The slab is loaded along the 𝑥𝑥′ and 𝑦𝑦′ directions by in-plane load per unit length 𝑁𝑁. The slab was 
assumed to be simply supported along edges parallel to the 𝑦𝑦′ axis. Along the edges parallel to the 
𝑥𝑥′ axis, generalized boundary conditions were assumed; the vertical displacement and the rotation 
were partially restrained by translational and rotational springs of magnitude 𝑆𝑆𝑎𝑎 , 𝑆𝑆𝑏𝑏, 𝜅𝜅𝑎𝑎, and 𝜅𝜅𝑏𝑏, 
respectively, as shown in figure 12. Traditional boundary conditions can be captured by assigning 
appropriate values to the spring constants. As shown in previous sections, if 𝑆𝑆𝑎𝑎 and 𝑆𝑆𝑏𝑏 are 
significantly large, the edge of the slab would not have any vertical displacement. If 𝜅𝜅𝑎𝑎 =𝜅𝜅𝑏𝑏=0, the 
slab would be free to rotate, which constitutes a simply supported condition. In contrast, if both 
rotational springs approach the infinite, the edge cannot rotate and a clamped boundary condition 
is obtained.  
 
Based on thin-slabs theory, the partial differential equation for the vertical deflection 𝑤𝑤 of a slab 
resting on an elastic foundation is given by 
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𝐷𝐷 �

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥′4  +

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥′2𝜕𝜕𝑦𝑦′2 +

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦′4 �  +  𝑁𝑁 �

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥′2 +

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦′2

�  + Λ 𝑤𝑤 =  0  (21) 

 
where 𝐷𝐷 = 𝐸𝐸ℎ3/12/(1− 𝜈𝜈2) is the slab’s bending stiffness. Along the elastically restrained 
edges, the shear force and bending moment are 
 

 𝑉𝑉(𝑥𝑥′, 𝑏𝑏𝐿𝐿) = 𝑆𝑆𝑎𝑎𝑤𝑤(𝑥𝑥′,𝑏𝑏𝐿𝐿)  (22) 
 𝑉𝑉(𝑥𝑥′,−𝑏𝑏𝐿𝐿) = −𝑆𝑆_𝑏𝑏 𝑤𝑤(𝑥𝑥′,−𝑏𝑏𝐿𝐿)   (23) 
 𝑀𝑀(𝑥𝑥′,𝑏𝑏𝐿𝐿) = 𝜅𝜅𝑎𝑎𝜃𝜃(𝑥𝑥′,𝑏𝑏𝐿𝐿)  (24) 
 𝑀𝑀(𝑥𝑥′,−𝑏𝑏𝐿𝐿) = −𝜅𝜅𝑏𝑏𝜃𝜃(𝑥𝑥′,−𝑏𝑏𝐿𝐿)  (25) 

 
where 𝑉𝑉, 𝑀𝑀, and 𝜃𝜃 are the shear force, bending moment, and rotation of the slab. Normalizing 
lengths with respect to 𝐿𝐿, the partial differential equation for 𝑤𝑤 becomes 
 

 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4  +

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 +

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4  +  𝑘𝑘 �

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

�  + λ4𝑤𝑤 =  0  (26) 

 
where the dimensionless buckling-load coefficient, 𝑘𝑘, and dimensionless subgrade-stiffness 
coefficient, 𝜆𝜆, are 
 

 
𝑘𝑘 =

𝑁𝑁𝐿𝐿2

𝐷𝐷  (27) 

 
𝜆𝜆4 =

Λ𝐿𝐿4

𝐷𝐷   (28) 

 
Because edges parallel to the 𝑦𝑦′ axis are simply supported, the solution of equation 26 can be 
assumed as follows: 
 

 𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑦𝑦) sin 𝛼𝛼𝑥𝑥  (29) 
 
where 𝛼𝛼 = 𝑛𝑛𝑛𝑛, with 𝑛𝑛 being an integer. Substituting equation 29 into equations 26 and 22-25, the 
differential equation for 𝑓𝑓(𝑦𝑦) is 
 

 𝑑𝑑4𝑓𝑓
𝑑𝑑𝑦𝑦4 + (𝑘𝑘 − 2𝛼𝛼2)

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑦𝑦2  +  (𝛼𝛼4 − 𝑘𝑘𝛼𝛼2 + 𝜆𝜆4)𝑓𝑓 = 0  (30) 

 
and its boundary conditions are 
 

 𝑓𝑓′′′(𝑏𝑏) −  [ 𝛼𝛼2(2− 𝜈𝜈) − 𝑘𝑘]𝑓𝑓′(𝑏𝑏)  =  𝐿𝐿𝑎𝑎𝑓𝑓(𝑏𝑏) (31) 
 𝑓𝑓′′′(−𝑏𝑏)  −  [ 𝛼𝛼2(2− 𝜈𝜈)− 𝑘𝑘]𝑓𝑓′(−𝑏𝑏)  =  −𝐿𝐿𝑏𝑏𝑓𝑓(−𝑏𝑏) (32) 
 𝑓𝑓′′(𝑏𝑏)  − 𝜈𝜈𝛼𝛼2𝑓𝑓(𝑏𝑏)  =  −𝑅𝑅𝑎𝑎𝑓𝑓′(𝑏𝑏)  (33) 
 𝑓𝑓′′(−𝑏𝑏)  − 𝜈𝜈𝛼𝛼2 𝑓𝑓(−𝑏𝑏)  =  𝑅𝑅𝑏𝑏 𝑓𝑓′(−𝑏𝑏)  (34) 
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where 𝐿𝐿𝑎𝑎 = 𝑆𝑆𝑎𝑎𝐿𝐿3/𝐷𝐷, 𝐿𝐿𝑏𝑏 = 𝑆𝑆𝑏𝑏𝐿𝐿3/𝐷𝐷, 𝑅𝑅𝑎𝑎 = 𝜅𝜅𝑎𝑎𝐿𝐿/𝐷𝐷, and 𝑅𝑅𝑏𝑏 = 𝜅𝜅𝑏𝑏𝐿𝐿/𝐷𝐷 are the translational and 
rotational stiffness indexes along both edges of the slab, respectively. Equation 30 is a fourth-order 
linear differential equation with constant coefficients, with the characteristic equation: 
 

 𝛽𝛽4  +  (𝑘𝑘 − 2𝛼𝛼2)𝛽𝛽2  +  (𝛼𝛼4 − 𝑘𝑘𝛼𝛼2 + 𝜆𝜆4) = 0  (35) 
then: 
 

 
𝛽𝛽2  =

1
2
�−(𝑘𝑘 − 2𝛼𝛼2) ± �𝑘𝑘2 − 4𝜆𝜆4�  (36) 

 
The solution 𝑓𝑓(𝑦𝑦) depends on the nature of the roots 𝛽𝛽, and three cases are identified: 
 
• Case 1: if Δ > 0 and 2𝛼𝛼2 − 𝑘𝑘 > √Δ, then the roots are real, and the solution is 
 

 𝑓𝑓(𝑦𝑦) = 𝑐𝑐1𝐷𝐷𝛽𝛽1𝑦𝑦 + 𝑐𝑐2𝐷𝐷−𝛽𝛽1𝑦𝑦 + 𝑐𝑐3𝐷𝐷𝛽𝛽2𝑦𝑦 + 𝑐𝑐4𝐷𝐷−𝛽𝛽2𝑦𝑦  (37) 
 
with 
 

 
𝛽𝛽12  =

2𝛼𝛼2 − 𝑘𝑘 + √Δ
2   (38) 

 
𝛽𝛽22  =

2𝛼𝛼2 − 𝑘𝑘 − √Δ
2   (39) 

 
• Case 2: If Δ > 0  and 2𝛼𝛼2 − 𝑘𝑘 < √Δ, then the roots are complex, and the solution is 
 

 𝑓𝑓(𝑦𝑦) = 𝑐𝑐1𝐷𝐷𝛽𝛽1𝑦𝑦 +  𝑐𝑐2𝐷𝐷𝛽𝛽2𝑦𝑦 +  𝑐𝑐3 sin𝛽𝛽2𝑦𝑦 + 𝑐𝑐4 cos𝛽𝛽2𝑦𝑦  (40) 
 
with 
 

 
𝛽𝛽12  =

2𝛼𝛼2 − 𝑘𝑘 + √Δ
2   (41) 

 
𝛽𝛽22  =  −

2𝛼𝛼2 − 𝑘𝑘 − √Δ
2   (42) 

 
• Case 3: if Δ < 0, then the roots are complex conjugate, and the solution is 
 

 𝑓𝑓(𝑦𝑦) = 𝑐𝑐1𝐷𝐷𝑠𝑠𝑦𝑦 cos 𝑡𝑡𝑦𝑦  +  𝑐𝑐2𝐷𝐷𝑠𝑠𝑦𝑦 sin 𝑡𝑡𝑦𝑦 + 𝑐𝑐3𝐷𝐷−𝑠𝑠𝑦𝑦 cos 𝑡𝑡𝑦𝑦  +  𝑐𝑐4𝐷𝐷−𝑠𝑠𝑦𝑦 sin 𝑡𝑡𝑦𝑦  (43) 
 
with 
 

 
𝛽𝛽12  =

2𝛼𝛼2 − 𝑘𝑘 + √4𝜆𝜆4 − 𝑘𝑘2𝑖𝑖
2 = 𝑠𝑠 + 𝑡𝑡𝑖𝑖 (44) 
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𝛽𝛽22  =  

2𝛼𝛼2 − 𝑘𝑘 − √4𝜆𝜆4 − 𝑘𝑘2𝑖𝑖
2 = −𝑠𝑠 + 𝑡𝑡𝑖𝑖 (45) 

 
Substituting 𝑓𝑓(𝑦𝑦) from equations 37, 40, and 43, into the boundary conditions in equations 31-34, 
a homogenous system of equations of the form [𝐴𝐴]4×4 ⋅ [𝐶𝐶]4×1 = [0]4×1 can be built, where 
[𝐴𝐴]4×4 stores the coefficient of 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, and 𝑐𝑐4, which are grouped in [𝐶𝐶]4×1. The critical axial 
load 𝑁𝑁𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 is the value of 𝑁𝑁 that makes the determinant of [𝐴𝐴] equal to zero. Equating the 
determinant [𝐴𝐴] to zero results in the characteristic stability equation, which, regardless the form 
of 𝑓𝑓(𝑦𝑦), can be written as follows: 
 

 [𝑅𝑅𝐿𝐿]1×16[𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶 ]16×𝑐𝑐[ 𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]𝑐𝑐×1 +  [𝑅𝑅𝐿𝐿]1×16[𝑅𝑅𝐸𝐸𝑀𝑀]16×1 = 0 (46) 
 
where: 𝑡𝑡: integer whose value depends on the type of roots: 𝑡𝑡=4 for real roots (Case 1), 𝑡𝑡=8 for 
complex roots (Case 2), and 𝑡𝑡=11 for complex conjugate roots (Case 3); [𝑅𝑅𝐿𝐿]1×16: vector 
containing combinations of 𝑅𝑅𝑎𝑎, 𝑅𝑅𝑏𝑏, 𝐿𝐿𝑎𝑎, and 𝐿𝐿𝑏𝑏; [ 𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]𝑐𝑐×1: vector of trigonometric functions; 
[𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶 ]16×𝑐𝑐: = matrix storing coefficients of trigonometric functions in [ 𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]𝑐𝑐×1; and 
[𝑅𝑅𝐸𝐸𝑀𝑀]16×1: terms not multiplying trigonometric functions.  
 
The values of [𝑅𝑅𝐿𝐿], [𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇], [𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶], and [𝑅𝑅𝐸𝐸𝑀𝑀] for the three types of solution are provided in 
appendix B. [𝑅𝑅𝐿𝐿] is the same for all the cases and corresponds to the first column in the tables; 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇] depends on the solution for 𝑓𝑓(𝑦𝑦), and it is given by the heading of the tables in the 
mentioned appendix; [𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶] are the entries in the tables; and [𝑅𝑅𝐸𝐸𝑀𝑀], which is different than zero 
only when the roots are real, is given in the last table of the appendix. The buckling-mode shapes 
are obtained by replacing the critical load in the homogeneous system [𝐴𝐴] ⋅ [𝐶𝐶] = [0], solving for 
one of the four constants in [𝐶𝐶], and substituting into the corresponding 𝑓𝑓(𝑦𝑦) (equations 37, 40, or 
43). 
 
An FE model was developed using ABAQUS to verify the results of the proposed equations. Four-
node, full-integration shell elements were used to model the slab resting on an elastic foundation. 
Two-node, three-dimensional connector elements with translational and rotational spring constant 
simulated the semirigid connections. A biaxial uniform load per unit length was applied along the 
edges of the slab, and an eigenvalue buckling analysis was performed. The vertical displacements 
of the simply supported edges, the ones parallel to the 𝑦𝑦′ axis, were fully restrained as to vertical 
displacement. In addition, a kinematic constraint was created to guarantee that the two opposite 
edges have negligible displacement in the 𝑦𝑦′ direction. The resulting critical loads were compared 
with results obtained by using the stability equation in equation 46. 
 
5.2  SLAB WITH CLASSICAL BOUNDARY CONDITIONS 

Consider a slab with simply supported edges parallel to the 𝑦𝑦′ axis, and the other two edges fully 
restrained as to vertical displacement (i.e., 𝑆𝑆𝑎𝑎=𝑆𝑆𝑏𝑏 tending to infinity). When Δ > 0 and 
 2𝛼𝛼2 − 𝑘𝑘 > √Δ, the terms in equation 46 are obtained by finding the limit when 𝑆𝑆𝑎𝑎 = 𝑆𝑆𝑏𝑏 → ∞. 
From table B-7 and substituting into equation 46: 
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 [𝑅𝑅𝐿𝐿]1×4[𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶 ]4×4[ 𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]4×1 +  [𝑅𝑅𝐿𝐿]1×4[𝑅𝑅𝐸𝐸𝑀𝑀]4×1 = 0 
 

(47) 
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−2𝐵𝐵𝑚𝑚𝐵𝐵𝑝𝑝2 2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝
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cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)
sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2) 
sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)

�

+ �

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏
 𝑅𝑅𝑎𝑎
𝑅𝑅𝑏𝑏
1

��
8𝛽𝛽1𝛽𝛽2

0
0
0

� = 0 

(48) 

 
where 𝐵𝐵𝑝𝑝 = 𝛽𝛽1 + 𝛽𝛽2 and 𝐵𝐵𝑚𝑚 = 𝛽𝛽1 − 𝛽𝛽2. After performing the matrix operations, equation 48 
becomes 
 

 −2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝2 cosh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)  + 2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝2 cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)   
+ 𝑅𝑅𝑎𝑎�2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)  
− 2𝐵𝐵𝑚𝑚𝐵𝐵𝑝𝑝2 sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2) �  
+ 𝑅𝑅𝑏𝑏�2𝐵𝐵𝑚𝑚2 𝐵𝐵𝑝𝑝sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)
− 2𝐵𝐵𝑚𝑚𝐵𝐵𝑝𝑝2sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2) �
+ 𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏�2𝐵𝐵𝑚𝑚2 cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2)  
− 2𝐵𝐵𝑝𝑝2 cosh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2)  + 8𝛽𝛽1𝛽𝛽2� = 0 

    (49) 

 
If the slab is simply supported along all edges, the stability equation when the roots are real is 
obtained making 𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑏𝑏 = 0. Then equation 49 becomes 
 

 (𝛽𝛽12 − 𝛽𝛽22)2 sinh(2𝑏𝑏𝛽𝛽1) sinh(2𝑏𝑏𝛽𝛽2) = 0   (50) 

 
In addition, 𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑏𝑏 → ∞ provides the equations for a clamped slab. Similar procedures can be 
followed for the other cases (i.e., complex and complex conjugate roots). Tables 1 and 2 
summarize the stability equations for a slab with two edges simply supported and clamped, 
respectively.  
 

Table 1. Stability Equations for a Slab With All Edges Simply Supported 

Case Stability Equation 
Δ > 0, 2𝛼𝛼2 − 𝑘𝑘 > √Δ (𝛽𝛽12  − 𝛽𝛽22)2 sinh(2𝑏𝑏𝛽𝛽1) sinh(2𝑏𝑏𝛽𝛽2)  = 0 
Δ > 0, 2𝛼𝛼2 − 𝑘𝑘 < √Δ 4 (𝛽𝛽12 + 𝛽𝛽22)2 sin(𝑏𝑏𝛽𝛽2) cos(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1) = 0 
Δ < 0  8𝑠𝑠2𝑡𝑡2[cos(4𝑏𝑏𝑡𝑡) − cosh(4𝑏𝑏𝑠𝑠) ] = 0 
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Table 2. Stability Equations for a Slab With Two Edges Simply Supported and Two Edges Clamped 

Case Stability Equation 

Δ > 0, 2𝛼𝛼2 − 𝑘𝑘 > √Δ 2(𝛽𝛽1 + 𝛽𝛽2)2 cosh[2 𝑏𝑏 (𝛽𝛽1 − 𝛽𝛽2)]  
−  2 (𝛽𝛽1 − 𝛽𝛽2)2 cosh[2 𝑏𝑏 (𝛽𝛽1 + 𝛽𝛽2)]  = 0 

Δ > 0, 2𝛼𝛼2 − 𝑘𝑘 < √Δ 4 𝛽𝛽1𝛽𝛽2 cos2(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1) − 4𝛽𝛽1𝛽𝛽2(𝑏𝑏 𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1)
− 4(𝛽𝛽12 − 𝛽𝛽22) sin(𝑏𝑏𝛽𝛽2) cos(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1) = 0 

Δ < 0  𝑠𝑠2 cos(4𝑏𝑏𝑡𝑡) − 𝑡𝑡2 cosh(4𝑏𝑏𝑠𝑠) = 0 
 
Table 3 compares the critical load calculated using the proposed equations, the FE model, and the 
values reported by Yu and Wang (2008) for two boundary conditions: simply supported and 
clamped. The slab’s length is twice its width (𝑏𝑏=0.25), and three support conditions were assumed 
(𝜆𝜆=0, 2, and 5). The table also shows the percentage difference with respect to the proposed 
method. As shown, the agreement is excellent. 
 

Table 3. Comparison Among Yu and Wang (2008), Equations, and ABAQUS for b=0.25 

Boundary 
Condition 𝜆𝜆 

Proposed 
Method 

Yu and Wang 
(2008) ABAQUS 

𝑘𝑘 𝑘𝑘 
Difference 

(%) 𝑘𝑘 
Difference 

(%) 

Simply 
Supported 

0 49.3475 49.35 -0.005 49.2219 0.255 
2 49.6722 49.67 0.004 49.5546 0.237 
5 62.0136 62.02 -0.010 62.2191 -0.331 

Clamped 
0 150.9549 150.99 -0.023 149.7369 0.807 
2 151.2148 151.24 -0.017 150.0006 0.803 
5 158.1408 158.13 0.007 159.9969 -1.174 

 
5.3  CRITICAL LOAD OF CONCRETE PAVEMENT 

Consider a square slab (𝐿𝐿=2𝑏𝑏𝐿𝐿=4.0 m) of a rigid pavement whose longitudinal joints are assumed 
simply supported. The slab has a thickness of ℎ=0.3 m, and it is resting on an elastic foundation 
with modulus of subgrade reaction of Λ=18.2 MN/m3. The concrete has an elastic modulus of 
𝐸𝐸=25000 MPa and a Poisson’s ration of 𝜈𝜈=0.15. The transverse joint ahead of traffic is in good 
condition, meaning there is a good transfer of shear force and bending moment to the next slab 
(𝜅𝜅𝑎𝑎=1.439×106 kN×m/rad/m and 𝐿𝐿𝑎𝑎=8.991×105 N/m/m). Conversely, the other transverse joint is 
progressively deteriorating to the point there is no load transfer to the adjacent slab. The objective 
is to find the effect of joint deterioration on the critical load and the first mode of buckling. 
 
The bending stiffness of the slab is 𝐷𝐷 = 𝐸𝐸ℎ3/12/(1− 𝜈𝜈2)=57.5 MN×m. The translational and 
rotational stiffness indexes of the joints ahead of traffic are 𝐿𝐿𝑎𝑎=𝑆𝑆𝑎𝑎𝐿𝐿3/𝐷𝐷=100 and 𝑅𝑅𝑎𝑎=𝜅𝜅𝑎𝑎𝐿𝐿/
𝐷𝐷=1,000. The parameter associated with the elastic foundation is 𝜆𝜆=Λ𝐿𝐿4/𝐷𝐷=3.0. Six joint-
deterioration conditions were considered by assigning different values to the parameters 𝐿𝐿𝑏𝑏 and 
𝑅𝑅𝑏𝑏. The values ranged between 𝑅𝑅𝑎𝑎=0.001 and 𝑆𝑆𝑎𝑎=0.01, which represents no load transfer between 
slabs, to 𝑅𝑅𝑎𝑎=200 and 𝑆𝑆𝑎𝑎=2,000. 



 

33 

The blowup loads 𝑁𝑁𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 for the various joint conditions were calculated using equation 46 and are 
summarized in table 4. As the stiffness of the joint is reduced, the slab’s restriction to motion also 
decreases. This reduction in stiffness, as expected, decreased the magnitude of the critical load. 
Also, for the selected values of 𝑅𝑅𝑎𝑎 and 𝑆𝑆𝑎𝑎, the change of 𝑁𝑁𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 is almost linear, highlighting the 
relevance of accurate characterization of joint deterioration for prediction of the critical load of 
concrete pavement.  
 

Table 4. Effect of Joint Deterioration on Critical Load 

Joint Condition 𝑘𝑘 𝑁𝑁𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐 (kN/m) 
𝑅𝑅𝑎𝑎=0.001, 𝑆𝑆𝑎𝑎 = 0.01 18.10 65,110.22 
𝑅𝑅𝑎𝑎=10, 𝑆𝑆𝑎𝑎 = 1 21.51 77,377.14 
𝑅𝑅𝑎𝑎=20, 𝑆𝑆𝑎𝑎 = 10 24.36 87,605.53 
𝑅𝑅𝑎𝑎=50, 𝑆𝑆𝑎𝑎 = 100 29.16 104,861.5 
𝑅𝑅𝑎𝑎=100, 𝑆𝑆𝑎𝑎 = 1000 34.24 123,156.9 
𝑅𝑅𝑎𝑎=200, 𝑆𝑆𝑎𝑎 = 2000 37.79 135,912.0 

 
Figure 13 shows the effect of joint deterioration on normalized buckling-mode shapes. If the joint 
is in good condition (𝑆𝑆𝑏𝑏=2000 and 𝐿𝐿𝑏𝑏=200), the maximum deflection is located towards the center 
of the slab. As the transverse joint deteriorates, the point of maximum deflection shifts toward the 
weaker joint. For the weakest joint condition, not only is the maximum deflection located at the 
joint but also the curvature of the slab has changed. The deformed shaped agrees with the 
deformation of concrete pavement when it fails by buckling. 
 
It should be highlighted that the proposed method has the capability of considering rotational and 
translational spring stiffness independent from each other. However, in the case of actual concrete 
pavements, joint deterioration causes stiffness reduction in a coupled fashion, indicating that a 
function relating 𝑅𝑅𝑎𝑎 to 𝑆𝑆𝑎𝑎 and 𝑅𝑅𝑏𝑏 to 𝑆𝑆𝑏𝑏 must be included. Consequently, some of the 𝑅𝑅𝑏𝑏– 𝑆𝑆𝑏𝑏 
combinations in figure 13 are not likely to occur in real life. This observation also applies to the 
results in sections 5.4–5.7. 
 

 
 

Figure 13. Effect of Joint Deterioration on Mode Shapes 
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5.4  EFFECT OF JOINT STIFFNESS ON CONCRETE-PAVEMENT BLOWUP 

The influence of the degree of constraint as to vertical displacement and rotation on the critical 
load of a square slab was studied. Two support cases were considered: For the first, no elastic 
foundation was considered (𝜆𝜆 = 0); and for the second , the slab geometry, material properties, 
and modulus of subgrade reaction provided 𝜆𝜆=2. Slab edges not being simply supported were 
assumed to have the same degree of constraint (𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏 and 𝑆𝑆𝑎𝑎=𝑆𝑆𝑏𝑏); 𝑅𝑅𝑎𝑎 ranged between 10-3 and 
104, while 𝑆𝑆𝑎𝑎 varied between 10-2 and 104. The range of values for 𝑅𝑅𝑎𝑎 and 𝑆𝑆𝑎𝑎 can be physically 
interpreted as various joint-deterioration degrees. 
 
Figures 14 and 15 show the variation of the dimensionless buckling-load coefficient 𝑘𝑘 with 𝑆𝑆𝑎𝑎 and 
𝑅𝑅𝑎𝑎 for both values of 𝜆𝜆. If the vertical restraint was low (𝑆𝑆𝑎𝑎<20), the rotational restraint had 
negligible effect on the critical load. For instance, when 𝜆𝜆=2, 𝑘𝑘 increased only 0.02% after 
increasing 𝑅𝑅𝑎𝑎 from 10-3 to 104, indicating that vertical displacement of the edges is more important 
than rotation. In contrast, the relevance of 𝑅𝑅𝑎𝑎 is very high as the magnitude of 𝑆𝑆𝑎𝑎 is higher, with 𝑘𝑘 
almost doubled when changing the magnitude of the rotational stiffness index between its extreme 
values when 𝑆𝑆𝑎𝑎=104 (increment of 91% and 87% for 𝜆𝜆=0 and 2, respectively). 
 

 
 

Figure 14. Effect of Semirigid Connections of Critical Load for 𝜆𝜆=0 

 
 

Figure 15. Effect of Semirigid Connections of Critical Load for 𝝀𝝀=2 
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Similarly, the highest influence of the translational restraint was seen for the highest magnitude of 
𝑅𝑅𝑎𝑎. If 𝑅𝑅𝑎𝑎=10-3, the increment of 𝑘𝑘 when there is no elastic foundation and 𝑆𝑆𝑎𝑎 changes from 50 to 
104 is 15%. In contrast, for the same change in 𝑆𝑆𝑎𝑎 but for 𝑅𝑅𝑎𝑎=104, the dimensionless buckling-load 
coefficient doubled from 𝑘𝑘=18.73 to 37.67. In general, three zones can be identified to characterize 
the effect of 𝑅𝑅𝑎𝑎 and 𝑆𝑆𝑎𝑎 on the critical load. If 𝑅𝑅𝑎𝑎<0.1 and 𝑅𝑅𝑎𝑎>100, the rotational stiffness index 
has no effect on the critical load, regardless the magnitude of 𝑆𝑆𝑎𝑎. Conversely, if 10< 𝑅𝑅𝑎𝑎<100, the 
change of 𝑘𝑘 with 𝑅𝑅𝑎𝑎 is almost linear in the semilogarithmic scale. These results indicate that 
preventive measures against concrete-pavement blowup should include joint-quality inspection.  
 
Figure 16 compares the results from the proposed equation and ABAQUS. The continuous line 
represents the values predicted by the FE model. The figure also shows the equation of a linear fit 
to the cloud of points, which identifies a good agreement between the results obtained using 
equation 46 and ABAQUS. However, it is worth noting that the proposed solution does not need 
any special-purpose software like ABAQUS and can be easily implemented.  
 

 
 

Figure 16. Comparison Between Calculated Values and ABAQUS 

5.5  EFFECT OF SLAB SIZE ON CONCRETE-PAVEMENT BLOWUP 

The effect of a slab’s aspect ratio on the critical load under various restraint conditions was 
analyzed. Figure 17 shows such variation when 𝑏𝑏 changed between 0.3 and 2.0; 𝑏𝑏=0.3 represents 
a slab whose width is 60% longer than its length. Variation of half the aspect ratio can be physically 
interpreted as a slab with a fixed length whose width continuously decreases. Values of aspect 
ratio that are too small or too big can represent structural behavior other than that of a slab, which 
is out of the scope of this work. The results presented were obtained assuming 𝑆𝑆𝑎𝑎=𝑆𝑆𝑏𝑏 and 𝑅𝑅𝑎𝑎=𝑅𝑅𝑏𝑏. 
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Figure 17. Effect of Size on Critical Load 

The dimensionless buckling-load coefficient 𝑘𝑘 is insensitive to aspect ratio if 𝑆𝑆𝑎𝑎 is low, regardless 
of the rotational restraint for both values of 𝜆𝜆 considered. For instance, if 𝑅𝑅𝑎𝑎=104, 𝑆𝑆𝑎𝑎=1, and 𝜆𝜆=2, 
𝑘𝑘 changes 2.6% between the two extreme values of 𝑏𝑏. As vertical restraint increased, critical load 
augmented and the aspect ratio’s influence was significant. For the same case (𝜆𝜆=2 and 𝑅𝑅𝑎𝑎=104) 
and 𝑆𝑆𝑎𝑎=50, the critical load decreased 42% when 𝑏𝑏 changed from 0.3 to 2.0. Similarly, the impact 
of 𝑅𝑅𝑎𝑎 on the critical load became greater as 𝑆𝑆𝑎𝑎 increased. These results show that proper 
characterization of vertical displacement at the edges of the slab is crucial for accurate calculation 
of the critical load. 
 
Most of the influence of the semirigid connections happened for 𝑏𝑏 less than 1.2. As 𝑏𝑏 increased 
beyond 1.2, the influence of the rotational and translational stiffness indexes decreased to the point 
that all lines became almost coincidental and parallel to each other. In other words, the boundary 
conditions of the edges that are not simply supported become irrelevant once the bending of the 
slab is predominantly in one direction, that is, when the slab’s width is significantly greater than 
its length. 
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In summary, a slab’s aspect ratio is a relevant factor when determining critical load; and its 
influence is coupled with the boundary conditions. Consequently, care should be exercised when 
using solutions that consider slabs with infinite in-plane dimensions. In addition, in the design of 
concrete pavement, a slab’s aspect ratio should be kept small to minimize the likelihood of blowup. 
 
5.6  PRACTICAL IMPLEMENTATION 

Rigid-pavement design methodologies, such as the MEPDG, account for joint deterioration using 
empirical equations (ARA-ERES, 2004). In the MEPDG, joint deterioration is related to load-
transfer efficiency, 𝐿𝐿𝐿𝐿𝐸𝐸, which is defined as the ratio between the approach-slab deflection, 𝑤𝑤𝑎𝑎, 
and the leave-slab deflection, 𝑤𝑤𝑤𝑤, in percentage (see figure 18). In other words: 
 

 𝐿𝐿𝐿𝐿𝐸𝐸 =
𝑤𝑤𝑎𝑎
𝑤𝑤𝑤𝑤

× 100 (51) 

 

 
 

Figure 18. Load-Transfer Efficiency and Translational Spring Constant 

The LTE is affected by aggregate interlock, quality of the support of the concrete slab, and details 
of the dowel system connecting the two slabs, and can be calculated as follows (ARA–ERES 
2004): 
 

 
𝐿𝐿𝐿𝐿𝐸𝐸 =  100 �1 − �1 −

𝐿𝐿𝐿𝐿𝐸𝐸𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤
100 �  �1−

𝐿𝐿𝐿𝐿𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎
100 � �1 −

𝐿𝐿𝐿𝐿𝐸𝐸𝑏𝑏𝑎𝑎𝑠𝑠𝑤𝑤
100 � � (52) 

 
where 𝐿𝐿𝐿𝐿𝐸𝐸𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤 , 𝐿𝐿𝐿𝐿𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝐿𝐿𝐿𝐿𝐸𝐸𝑏𝑏𝑎𝑎𝑠𝑠𝑤𝑤  are the contributions to 𝐿𝐿𝐿𝐿𝐸𝐸 of dowel systems, aggregate 
interlock, and supporting base, respectively. 
 
The spring connecting the two slabs in the vertical direction develops a force 𝑉𝑉𝑠𝑠 equal to 
 

 𝑉𝑉𝑠𝑠 =  𝑘𝑘𝑠𝑠 × Δ =  𝑘𝑘𝑠𝑠 ×  (𝑤𝑤𝑤𝑤  −  𝑤𝑤𝑎𝑎) = 𝑘𝑘𝑠𝑠 ×  �1 −
𝐿𝐿𝐿𝐿𝐸𝐸
100

�𝑤𝑤𝑤𝑤    (53) 
 
where 𝑘𝑘𝑠𝑠 is the spring stiffness, and Δ is the spring deformation. The shear equilibrium at the joint 
between the approach- and leave-slabs requires 
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 𝑉𝑉𝑤𝑤 − 𝑉𝑉𝑎𝑎  =  𝑉𝑉𝑠𝑠 = 𝑘𝑘𝑠𝑠 × �1 −
𝐿𝐿𝐿𝐿𝐸𝐸
100

�𝑤𝑤𝑤𝑤   (54) 

 
where 𝑉𝑉𝑤𝑤 and 𝑉𝑉𝑎𝑎  are the shear at the edges of the leave- and approach-slabs. In equation 54, 𝑉𝑉𝑤𝑤, 𝑉𝑉𝑎𝑎 , 
and 𝑤𝑤𝑤𝑤 can be calculated by setting the equilibrium equations for each slab and using the 
appropriate boundary conditions. Joint deterioration can be accounted for through changes in 𝐿𝐿𝐿𝐿𝐸𝐸 
as implemented in MEPDG. It should be highlighted that MEPDG does not take into account 
transfer of rotation, but similar continuity conditions as in equation 54 can be established for 
rotation at slab joints. 
 
5.7  SUMMARY 

A stability equation was derived for a linear elastic slab resting on an elastic foundation with two 
simply supported and two partially restrained edges. The stability equation enables the critical-
load calculation using a single expression for various boundary conditions, including the classical 
cases (i.e., simply supported, free, and clamped). In addition, the solution presented was verified 
using published results for the classical boundary conditions and an FE model that considered 
edges elastically restrained as to translation and rotation. An example of a slab with simply 
supported and clamped edges also demonstrated a step-by-step procedure to implement the derived 
stability equation. 
 
It was shown that the effects of the semirigid connections on the critical load were coupled to each 
other: The rotational spring greatly influenced the critical load as long as the translational spring 
had relevant magnitude. Furthermore, in analysis of a typical concrete pavement, it was found that 
the boundary conditions are of great relevance not only to the buckling load but also on the first 
buckling-mode shape. It was shown how as the joint deficiency diminished (i.e., reducing spring 
constants), the point of maximum deflection in the buckling-mode shape shifted from the slab’s 
center to the edges. Finally, the relevance of the slab’s aspect ratio on static buckling increased as 
boundary conditions became stiffer. However, the influence significantly decreased for large 
aspect ratios. From a practical point of view, it can be concluded that the likelihood of concrete 
pavement blowup can be reduced in the design phase by reducing the slab’s aspect ratio and in the 
maintenance stage by keeping the joints in good condition. 
 
6.  SUMMARY AND CONCLUSIONS 

Experimental measurements, the FE method, and closed-form solutions were combined to study 
the response to temperature changes of rigid pavement with partially restrained edges. Three 
models were developed. First, Westergaard’s solution for curling stresses was extended to include 
edges with generalized boundary conditions. The closed-form solution obtained was verified with 
the FE method. Second, a FE model was developed to determine the curling responses of a 
multilayer airfield pavement with partially restrained edges. The model was validated with 
experimental measurements from the John F. Kennedy International Airport. Third, a closed-form 
solution for blowup analysis of a rectangular slab resting on an elastic foundation was found. This 
solution was also verified using the FE method. Based on the analysis performed, the following 
conclusions can be drawn: 
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• The ability of joints to transfer shear force and bending moment across a slab significantly 
affects maximum deflection and stresses caused by temperature gradients. 

• Partial rotational restraint, which is not considered in conventional analysis and design of 
rigid pavements, is responsible for most of the difference when free edges are taken as 
reference.  

• The influences of partial restraint as to displacement and rotation along slab edges on 
blowup behavior are coupled with each other; the relevance of rotational restriction 
increases as the magnitude of the translational spring increases. 

• The ratio between the slab width and the radius of relative stiffness determines how much 
larger the curling stresses in a square slab are compared to those in an infinite slab. More 
specifically, joint condition is more relevant in short slabs. In addition, the slab’s aspect 
ratio becomes relevant in the calculation of buckling load when there is good load-transfer 
efficiency in vertical displacement and rotation. 
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APPENDIX A—LINEAR SYSTEM OF EQUATIONS AND SOLUTION FOR SLAB-ON-
GRADE SYSTEMS 

Appendix A lists a linear system of equations and solution for slab-on-grade systems, which are 
discussed in section 3.1 of the main document. 
 
Linear system of equations in matrix form is as follows: 
 

 

�

𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

𝐴𝐴13 𝐴𝐴14
𝐴𝐴23 𝐴𝐴24

𝐴𝐴31 𝐴𝐴32
𝐴𝐴41 𝐴𝐴42

𝐴𝐴33 𝐴𝐴34
𝐴𝐴43 𝐴𝐴44

� × �

𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
𝐶𝐶4

� = �

𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
𝑏𝑏4

� (A.1) 

 
The entries in the coefficient matrix are: 
 

  𝐴𝐴11 =  𝑅𝑅𝑏𝑏 cosh 𝜆𝜆 sin 𝜆𝜆 + √2 sinh 𝜆𝜆 sin 𝜆𝜆 − 𝑅𝑅𝑏𝑏 cos 𝜆𝜆 sinh 𝜆𝜆  (A.2) 
  𝐴𝐴12 = 𝑅𝑅𝑏𝑏 cos𝜆𝜆 cosh 𝜆𝜆 + 𝑅𝑅𝑏𝑏 sin 𝜆𝜆 sinh 𝜆𝜆 + √2 cos𝜆𝜆 sinh 𝜆𝜆 (A.3) 
  𝐴𝐴13 = 𝑅𝑅𝑏𝑏 cos𝜆𝜆 cosh 𝜆𝜆 − √2 sin 𝜆𝜆 cosh 𝜆𝜆 − 𝑅𝑅𝑏𝑏 sin 𝜆𝜆 sinh 𝜆𝜆 (A.4) 
  𝐴𝐴14 = −𝑅𝑅𝑏𝑏 cosh 𝜆𝜆 sin 𝜆𝜆 − 𝑅𝑅𝑏𝑏 cos𝜆𝜆 sinh 𝜆𝜆 − √2 cos 𝜆𝜆 cosh 𝜆𝜆 (A.5) 
  𝐴𝐴21 =  𝑅𝑅𝑎𝑎 cosh 𝜆𝜆 sin 𝜆𝜆 + √2 sinh 𝜆𝜆 sin 𝜆𝜆 − 𝑅𝑅𝑎𝑎 cos𝜆𝜆 sinh 𝜆𝜆 (A.6) 
  𝐴𝐴22 =  −𝑅𝑅𝑎𝑎 cos𝜆𝜆 cosh 𝜆𝜆 − √2 cos𝜆𝜆 sinh 𝜆𝜆 − 𝑅𝑅𝑎𝑎 sin 𝜆𝜆 sinh 𝜆𝜆 (A.7) 
  𝐴𝐴23 = −𝑅𝑅𝑎𝑎 cos𝜆𝜆 cosh 𝜆𝜆 + √2 sin 𝜆𝜆 cosh 𝜆𝜆 + 𝑅𝑅𝑎𝑎 sin 𝜆𝜆 sinh 𝜆𝜆  (A.8) 
  𝐴𝐴24 = −𝑅𝑅𝑎𝑎 cosh 𝜆𝜆 sin 𝜆𝜆 − 𝑅𝑅𝑎𝑎 cos 𝜆𝜆 sinh 𝜆𝜆 − √2 cos 𝜆𝜆 cosh 𝜆𝜆 (A.9) 
  𝐴𝐴31 = − cosh 𝜆𝜆 sin 𝜆𝜆 − cos𝜆𝜆 sinh 𝜆𝜆 + √2 𝐿𝐿𝑏𝑏 cos 𝜆𝜆 cosh 𝜆𝜆 (55) 
  𝐴𝐴32 = − cos𝜆𝜆 cosh 𝜆𝜆 − √2𝐿𝐿𝑏𝑏 sin 𝜆𝜆 cosh 𝜆𝜆 + sin 𝜆𝜆 sinh 𝜆𝜆 (A.11) 
  𝐴𝐴33 = cos 𝜆𝜆 cosh 𝜆𝜆 − √2𝐿𝐿𝑏𝑏 cos 𝜆𝜆 sinh 𝜆𝜆 + sin 𝜆𝜆 sinh 𝜆𝜆 (A.12) 
  𝐴𝐴34 =  − cosh 𝜆𝜆 sin 𝜆𝜆 + √2𝐿𝐿𝑏𝑏 sinh 𝜆𝜆 sin 𝜆𝜆 + cos𝜆𝜆 sinh 𝜆𝜆 (A.13) 
  𝐴𝐴41 = cosh 𝜆𝜆 sin 𝜆𝜆 + cos 𝜆𝜆 sinh 𝜆𝜆 − √2𝐿𝐿𝑎𝑎 cos𝜆𝜆 cosh 𝜆𝜆 (A.14) 
  𝐴𝐴42 = − cos𝜆𝜆 cosh 𝜆𝜆 − √2 𝐿𝐿𝑎𝑎 sin 𝜆𝜆 cosh 𝜆𝜆 + sin 𝜆𝜆 sinh 𝜆𝜆 (A.15) 
  𝐴𝐴43 = cos 𝜆𝜆 cosh 𝜆𝜆 − √2𝐿𝐿𝑎𝑎 cos𝜆𝜆 sinh 𝜆𝜆 + sin 𝜆𝜆 sinh 𝜆𝜆 (A.16) 
  𝐴𝐴44 = cosh 𝜆𝜆 sin 𝜆𝜆 − √2𝐿𝐿𝑎𝑎 sinh 𝜆𝜆 sin 𝜆𝜆 − cos 𝜆𝜆 sinh 𝜆𝜆  (A.17) 

 
The entries in the 𝑏𝑏-matrix: 
 

 
𝑏𝑏1 = √2 (1 + 𝜈𝜈) 𝛼𝛼 Δ𝐿𝐿

𝑙𝑙2

ℎ  (A.18) 

 
𝑏𝑏2 = √2 (1 + 𝜈𝜈)𝛼𝛼 Δ𝐿𝐿

𝑙𝑙2

ℎ  (A.19) 

 𝑏𝑏3 = 0 (A.20) 
 𝑏𝑏4 = 0 (A.21) 

 
  



 

A-2 

The terms in the solution for displacements: 
 

 𝑐𝑐1  =   [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏(2𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)− 4 𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 + 2] sin3 𝜆𝜆 sinh𝜆𝜆
+ √2[−𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏 𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 − 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] cos3 𝜆𝜆 sinh 𝜆𝜆
+ (−𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 − 𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 − 2) cos3 𝜆𝜆 cosh𝜆𝜆  
+ √2(𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) cos𝜆𝜆 sinh3 𝜆𝜆
+ √2 [𝐿𝐿𝑎𝑎  (𝑅𝑅𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 − 1) − 𝐿𝐿𝑏𝑏] cos 𝜆𝜆 sinh𝜆𝜆  
+ (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 + 𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 + 2) cos𝜆𝜆 cosh3 𝜆𝜆}  
−√2[𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 + 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin 𝜆𝜆 cosh3 𝜆𝜆
+ √2(𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑏𝑏) sin3 𝜆𝜆 cosh𝜆𝜆  
+ √2[𝐿𝐿𝑎𝑎  (𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 − 1) − 𝐿𝐿𝑏𝑏] sin 𝜆𝜆 cosh𝜆𝜆
− 3[𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏 (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) − 4 𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 2] sin𝜆𝜆 cos2 𝜆𝜆 sinh 𝜆𝜆  
+ 3 √2 (−𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) sin 𝜆𝜆  cos2 𝜆𝜆  cosh𝜆𝜆  + 3 √2 [𝑅𝑅𝑎𝑎 (𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏
− 1) + 𝑅𝑅𝑏𝑏 (𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 − 1) + 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin2 𝜆𝜆 cos 𝜆𝜆 sinh 𝜆𝜆   + 3 √2  (𝑅𝑅𝑎𝑎
+ 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) cos𝜆𝜆  sinh𝜆𝜆 cosh2 𝜆𝜆  + 3 sin2 𝜆𝜆 cos𝜆𝜆 cosh𝜆𝜆 (𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎
+ 𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 + 2) + 3 (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 + 𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 + 2) cos𝜆𝜆 sinh2 𝜆𝜆 cosh𝜆𝜆 − 3 [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎
+ 2 𝐿𝐿𝑏𝑏) + 𝑅𝑅_𝑏𝑏 (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) + 4 𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 2] sin𝜆𝜆 sinh 𝜆𝜆 cosh2 𝜆𝜆  
−  3 √2 [𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏
+ 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin 𝜆𝜆 sinh2 𝜆𝜆 cosh𝜆𝜆 

 

(A.22) 

 𝑐𝑐2  =   √2  (𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏)(𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 − 1) sin3 𝜆𝜆 sinh𝜆𝜆  + √2(−𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) sin 𝜆𝜆  sinh3 𝜆𝜆  
+ √2 [𝐿𝐿𝑎𝑎  (−𝑅𝑅𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 − 1) + 𝐿𝐿𝑏𝑏] sin 𝜆𝜆  sinh 𝜆𝜆  
+  [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏) −𝑅𝑅𝑏𝑏 (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] cos3 𝜆𝜆  sinh𝜆𝜆  
+ √2 (𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) cos3 𝜆𝜆 cosh 𝜆𝜆  
+ [𝑅𝑅𝑏𝑏 (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) −𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏)] cos𝜆𝜆 sinh3 𝜆𝜆  
+ (2 𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 − 2 𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏) cos𝜆𝜆  sinh𝜆𝜆  
−√2 (𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏)(𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 1) cos𝜆𝜆 cosh3 𝜆𝜆  
+ √2  (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑏𝑏 𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑏𝑏) cos𝜆𝜆 cosh 𝜆𝜆  
+ (𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎) sin 𝜆𝜆 cosh3 𝜆𝜆  + (𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎 − 𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏) sin3 𝜆𝜆  cosh𝜆𝜆  
− 3 √2(𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏)(𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 − 1) sin 𝜆𝜆 cos2 𝜆𝜆 sinh 𝜆𝜆  
+ 3(𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎) sin 𝜆𝜆 cos2 𝜆𝜆 cosh𝜆𝜆  
+ 3[ 𝑅𝑅𝑏𝑏 (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) −  𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2𝐿𝐿𝑏𝑏)] sin2 𝜆𝜆  cos𝜆𝜆 sinh 𝜆𝜆  
+ 3[ 𝑅𝑅𝑏𝑏 (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) −  𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏)] cos 𝜆𝜆 sinh 𝜆𝜆 cosh2 𝜆𝜆
+ 3 √2(−𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑏𝑏) sin2 𝜆𝜆  cos𝜆𝜆  cosh 𝜆𝜆  
− 3 √2(𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏)(𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 1) cos𝜆𝜆  sinh2 𝜆𝜆  cosh 𝜆𝜆  
+ 3 √2(−𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) sin 𝜆𝜆  sinh 𝜆𝜆 cosh2 𝜆𝜆  
+ 3(𝑅𝑅𝑏𝑏 𝐿𝐿𝑏𝑏 −  𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎) sin𝜆𝜆 sinh2 𝜆𝜆 cosh𝜆𝜆 

(A.23) 

  



 

A-3/A-4 

 𝑐𝑐3  =   √2 (𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) sin3 𝜆𝜆  sinh𝜆𝜆  + √2 (𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏)(𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 1) sin𝜆𝜆  sinh3 𝜆𝜆  
+ √2 (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑏𝑏  𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑏𝑏) sin𝜆𝜆 sinh𝜆𝜆  + (𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎) cos3 𝜆𝜆 sinh𝜆𝜆  
−  √2 (𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏)(𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 − 1) cos3 𝜆𝜆 cosh𝜆𝜆  + (𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎) cos𝜆𝜆  sinh3 𝜆𝜆  
+ √2(−𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) cos𝜆𝜆  cosh3 𝜆𝜆
+ √2(𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 + 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑏𝑏) cos𝜆𝜆  cosh 𝜆𝜆  
+ [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏)−𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin𝜆𝜆  cosh3 𝜆𝜆  
+ [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏)− 𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin3 𝜆𝜆  cosh𝜆𝜆  +  2(𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎  −  𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏) sin𝜆𝜆  cosh 𝜆𝜆  
+ 3 √2(−𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑏𝑏) sin𝜆𝜆 cos2 𝜆𝜆 sinh𝜆𝜆  
+ 3[𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)−𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏)] sin𝜆𝜆 cos2 𝜆𝜆 cosh 𝜆𝜆
+ 3(𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎  −  𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏) sin2 𝜆𝜆  cos𝜆𝜆  sinh𝜆𝜆  + 3(𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎) cos𝜆𝜆 sinh 𝜆𝜆 cosh2 𝜆𝜆  
+ 3 √2(𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏)(𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 − 1) sin2 𝜆𝜆  cos𝜆𝜆  cosh𝜆𝜆  
+ 3 √2 (−𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) cos𝜆𝜆  sinh2 𝜆𝜆  cosh 𝜆𝜆  
+ 3√2(𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏) (𝐿𝐿𝑎𝑎  𝐿𝐿𝑏𝑏 + 1) sin𝜆𝜆 sinh𝜆𝜆 cosh2 𝜆𝜆  
+ 3[𝑅𝑅𝑎𝑎(𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏)−𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin𝜆𝜆 sinh2 𝜆𝜆 cosh𝜆𝜆 

  (A.24) 

 
𝑐𝑐4  =  (𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎 + 𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 + 2) sin3 𝜆𝜆  sinh𝜆𝜆  + (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 + 2) sin𝜆𝜆  sinh3 𝜆𝜆  

+ √2(𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 − 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑏𝑏) cos3 𝜆𝜆  sinh 𝜆𝜆  
+ [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)− 4 𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 2] cos3 𝜆𝜆  cosh 𝜆𝜆  
+ √2 [𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 + 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] cos𝜆𝜆  sinh3 𝜆𝜆  
+ √2 [𝐿𝐿𝑎𝑎 (𝑅𝑅𝑎𝑎 𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 − 1)− 𝐿𝐿𝑏𝑏] cos𝜆𝜆 sinh𝜆𝜆  
+ [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) + 4 𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 2] cos𝜆𝜆 cosh3 𝜆𝜆  
+ 2 (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 − 2) cos𝜆𝜆 cosh 𝜆𝜆  + √2(𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) sin𝜆𝜆 cosh3 𝜆𝜆  
+ √2 [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 − 1) + 𝑅𝑅𝑏𝑏  (𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 − 1) + 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin3 𝜆𝜆 cosh 𝜆𝜆
+ √2 [𝐿𝐿𝑏𝑏 − 𝐿𝐿𝑎𝑎  (𝑅𝑅𝑎𝑎  𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 − 1)] sin𝜆𝜆  cosh𝜆𝜆  
− 3 (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 + 2) sin𝜆𝜆  cos2 𝜆𝜆  sinh 𝜆𝜆  
− 3 √2 [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 − 1) + 𝑅𝑅𝑏𝑏  (𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 − 1) + 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sin𝜆𝜆  cos2 𝜆𝜆  cosh 𝜆𝜆  
+ 3 √2(−𝑅𝑅𝑎𝑎 − 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) sin2 𝜆𝜆 cos𝜆𝜆  sinh𝜆𝜆  
+ 3 √2 [𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 + 2 (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] cos𝜆𝜆 sinh𝜆𝜆 cosh2 𝜆𝜆  
− 3 [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)− 4 𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 2] sin2 𝜆𝜆 cos𝜆𝜆 cosh𝜆𝜆  
+ 3 [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑎𝑎 + 2 𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏  (2 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) + 4 𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 2] cos𝜆𝜆 sinh2 𝜆𝜆 cosh 𝜆𝜆  
+ 3 (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎 + 𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 + 2) sin𝜆𝜆 sinh𝜆𝜆 cosh2 𝜆𝜆  
+ 3√2 (𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) sin𝜆𝜆 sinh2 𝜆𝜆 cosh 𝜆𝜆 

(A.25) 

 
𝐷𝐷𝐷𝐷𝑡𝑡(𝐴𝐴) = −[𝑅𝑅𝑎𝑎  (𝑅𝑅𝑏𝑏  (𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 − 2) + 𝐿𝐿𝑎𝑎 + 2𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏(2𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)− 2𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 + 1] cos 4𝜆𝜆

− [𝑅𝑅𝑎𝑎(𝑅𝑅𝑏𝑏(𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 + 2) + 𝐿𝐿𝑎𝑎 + 2𝐿𝐿𝑏𝑏) + 𝑅𝑅𝑏𝑏(2𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏) + 2𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 + 1] cosh 4𝜆𝜆  
+ √2 [−𝑅𝑅𝑎𝑎  (𝑅𝑅𝑏𝑏  (𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)−𝐿𝐿𝑎𝑎   𝐿𝐿𝑏𝑏 + 1) + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 − 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏] sin 4𝜆𝜆  
− [𝑅𝑅𝑎𝑎  (𝐿𝐿𝑏𝑏  (𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎) + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑎𝑎 + 1) + 𝑅𝑅𝑏𝑏  𝐿𝐿𝑎𝑎 𝐿𝐿𝑏𝑏 + 𝑅𝑅𝑏𝑏 + 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑏𝑏)] sinh 4𝜆𝜆  + 2 (𝑅𝑅𝑎𝑎  𝐿𝐿𝑎𝑎
− 1) (𝑅𝑅𝑏𝑏  𝐿𝐿𝑏𝑏 − 1)  

 

(A.26) 

 
 



 

B-1 

APPENDIX B—TERMS IN THE CHARACTERISTIC STABILITY EQUATION 

Appendix B provides terms in the characteristic stability equation, which is shown in section 5.1 
of the main document. 
 
The following definitions are used in tables B-1 through B-7: 
 
 𝐶𝐶 = 𝑘𝑘 − 2𝛼𝛼2 (1− 𝜈𝜈) (B.1) 
 𝐶𝐶 = 𝑘𝑘 − 𝛼𝛼2 (2 − 𝜈𝜈) (B.2) 
 𝑇𝑇 = 𝛽𝛽12 (𝛼𝛼2𝜈𝜈 − 𝛽𝛽22) − 𝛽𝛽1𝛽𝛽2𝐶𝐶 + 𝛼𝛼2𝜈𝜈 (𝛽𝛽22 + 𝐶𝐶) (B.3) 
 𝐻𝐻 = 𝛽𝛽12(𝛼𝛼2𝜈𝜈 − 𝛽𝛽22) + 𝛽𝛽1𝛽𝛽2𝐶𝐶 + 𝛼𝛼2𝜈𝜈(𝛽𝛽22 + 𝐶𝐶) (B.4) 
 𝐽𝐽 = (𝐶𝐶 + 𝛽𝛽12)(𝛼𝛼2𝜈𝜈 + 𝛽𝛽22) (B.5) 
 𝐾𝐾 = (𝐶𝐶 − 𝛽𝛽22)(𝛼𝛼2 𝜈𝜈 − 𝛽𝛽12) (B.6) 
 𝐿𝐿 = 2 𝛼𝛼2𝐶𝐶𝜈𝜈 + 𝛽𝛽22 (𝑘𝑘 − 2𝛼𝛼2) + 𝛽𝛽12 (2𝛼𝛼2 + 2 𝛽𝛽22 − 𝑘𝑘) (B.7) 
 𝑃𝑃 = 2𝛼𝛼2 − 𝑘𝑘 + 𝑠𝑠2 + 𝑡𝑡2 (B.8) 
 𝑄𝑄 = −2𝛼𝛼2 + 𝑘𝑘 + 4𝑠𝑠2 (B.9) 
 𝑅𝑅 = 𝛼𝛼4𝜈𝜈2 − 𝑃𝑃(𝑠𝑠2 + 𝑡𝑡2) + 𝛼𝛼2𝜈𝜈𝑄𝑄 (B.10) 
 𝑃𝑃� = −2 𝛼𝛼2 + 𝑘𝑘 + 𝑠𝑠2 + 𝑡𝑡2 (B.11) 
 𝑄𝑄� = 2𝛼𝛼2 − 𝑘𝑘 + 4𝑡𝑡2 (B.12) 
 𝑅𝑅� = 𝑃𝑃�(𝑠𝑠2 + 𝑡𝑡2) + 𝛼𝛼2𝜈𝜈 𝑄𝑄�2 − 𝛼𝛼4𝜈𝜈2 (B.13) 

 
 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(5,6) = −𝛽𝛽14(𝛼𝛼2 𝜈𝜈 + 𝛽𝛽22) + 𝛽𝛽12 (−𝛽𝛽24 + 𝛼𝛼2𝐶𝐶𝜈𝜈 + 2𝛽𝛽22 𝐶𝐶)

+ 𝛼𝛼2 𝛽𝛽22 𝜈𝜈  [−𝛼𝛼2  − (𝜈𝜈 − 2) + 𝛽𝛽22  − 𝑘𝑘] 
(B.14) 

 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(5,16) = 𝛽𝛽16(𝛼𝛼2𝜈𝜈 + 𝛽𝛽22)2 − 𝛼𝛼4𝛽𝛽22𝜈𝜈2(𝐶𝐶 − 𝛽𝛽22)2  
+ 𝛽𝛽12 {2 𝛼𝛼2 𝛽𝛽26 𝜈𝜈 + 𝛼𝛼4 𝐶𝐶2 𝜈𝜈2 + 4 𝛼𝛼2𝛽𝛽22𝐶𝐶2𝜈𝜈 
+ 𝛽𝛽24𝐶𝐶 [𝑘𝑘 − 𝛼𝛼2 (3𝜈𝜈 + 2)]} + 𝛽𝛽14 {−𝛽𝛽26 + 2 𝛼𝛼4𝐶𝐶𝜈𝜈2 + 4𝛽𝛽24𝐶𝐶
+ 𝛽𝛽22𝐶𝐶[𝛼𝛼2 (3𝜈𝜈 + 2)− 𝑘𝑘]} 

(B.15) 

 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(7,6) = 2𝛽𝛽14 + 𝛽𝛽24 − 2𝛼𝛼2𝐶𝐶𝜈𝜈 +  (𝛽𝛽12 − 𝛽𝛽22)(𝑘𝑘 − 2𝛼𝛼2) (B.16) 
 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) = −𝛼𝛼4𝜈𝜈2 + (𝑠𝑠2 + 𝑡𝑡2)(2𝛼𝛼2 − 𝑘𝑘 − 7𝑠𝑠2 + 𝑡𝑡2) − 𝛼𝛼2𝜈𝜈𝑄𝑄 (B.17) 
 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,6) = 4𝛼𝛼2𝜈𝜈[−𝑘𝑘 (4𝑠𝑠2 + 𝑡𝑡2) + 2𝛼𝛼2(4𝑠𝑠2 + 𝑡𝑡2) + 12𝑠𝑠2𝑡𝑡2]

− 4𝛼𝛼4𝜈𝜈2(4𝑠𝑠2 + 𝑡𝑡2)
+ 4(𝑠𝑠2 + 𝑡𝑡2)[𝑘𝑘(4𝑠𝑠2 − 𝑡𝑡2) + 4𝑠𝑠4 − 𝑠𝑠2(8𝛼𝛼2 + 3𝑡𝑡2) + 𝑡𝑡4
+ 2𝛼𝛼2𝑡𝑡2] 

(B.18) 



 

B-2 

 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,16)
= 𝑘𝑘2[4𝑠𝑠6 + 𝑠𝑠4(9𝑡𝑡2 − 8𝛼𝛼2𝜈𝜈) + 𝑠𝑠2(4𝛼𝛼4𝜈𝜈2 + 6𝑡𝑡4 − 6𝛼𝛼2𝜈𝜈𝑡𝑡2)
+ (𝑡𝑡3 + 𝛼𝛼2𝜈𝜈𝑡𝑡)2] + 4𝑠𝑠10 + 𝑠𝑠8(17𝑡𝑡2 − 16𝛼𝛼2)
+ 4𝑠𝑠6{−2𝛼𝛼4[(𝜈𝜈 − 2)𝜈𝜈 − 2] + 7𝑡𝑡4 + 𝛼𝛼2(6𝜈𝜈 − 11)𝑡𝑡2}
+ 2𝑠𝑠4 {8𝛼𝛼6(𝜈𝜈 − 2) 𝜈𝜈 + 11𝑡𝑡6 + 6𝛼𝛼2(4𝜈𝜈 − 3)𝑡𝑡4
− 𝛼𝛼4[𝜈𝜈(𝜈𝜈 + 22)− 18]𝑡𝑡2}
+ 4𝑠𝑠2[𝛼𝛼8(𝜈𝜈 − 2)2 𝜈𝜈2 + 2𝑡𝑡8 + 𝛼𝛼2(6𝜈𝜈 − 1)𝑡𝑡6
+ 𝛼𝛼4(𝜈𝜈(13𝜈𝜈 − 14) + 6)𝑡𝑡4 − 3𝛼𝛼6(𝜈𝜈 − 2)𝜈𝜈(2𝜈𝜈 − 1)𝑡𝑡2]
+ 𝑡𝑡2(−𝛼𝛼4(𝜈𝜈 − 2)𝜈𝜈 + 𝑡𝑡4 + 2𝛼𝛼2𝑡𝑡2)2
+ 2𝑘𝑘{4𝑠𝑠8 + 𝑠𝑠6[11𝑡𝑡2 − 4𝛼𝛼2(𝜈𝜈 + 2)]}
+ 2𝑘𝑘{𝑠𝑠4[−4𝛼𝛼4(𝜈𝜈 − 4)𝜈𝜈 + 9𝑡𝑡4 + 𝛼𝛼2(11𝜈𝜈 − 18)𝑡𝑡2]
− [𝑡𝑡2 − 𝛼𝛼2(𝜈𝜈 − 2)](𝑡𝑡3 + 𝛼𝛼2𝜈𝜈𝑡𝑡)2} + 2𝑘𝑘{𝑠𝑠^2 [4 𝛼𝛼2(𝜈𝜈 − 2)𝜈𝜈2
+ 𝑡𝑡6 + 2 𝛼𝛼2(7𝜈𝜈 − 6) 𝑡𝑡^4 + 3 𝛼𝛼4(4− 5 𝜈𝜈) 𝜈𝜈𝑡𝑡2]} 

(B.19) 

 



 

 

B-3 

Table B-1. Terms in Characteristic Stability Equation When D>0 and 2α2-k>Δ0.5 (Case 1: Real Roots) 

[𝑅𝑅𝐿𝐿] [𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]1 
cosh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2) 

[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]2 
cosh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2) 

[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]3 
sinh(2𝑏𝑏𝛽𝛽1 − 2𝑏𝑏𝛽𝛽2) 

[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]4 
sinh(2𝑏𝑏𝛽𝛽1 + 2𝑏𝑏𝛽𝛽2) 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 2(𝛽𝛽1 + 𝛽𝛽2)2 −2(𝛽𝛽1 − 𝛽𝛽2)2 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 0 2(𝛽𝛽1  − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2 −2(𝛽𝛽1 − 𝛽𝛽2)2(𝛽𝛽1 + 𝛽𝛽2) 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏 0 0 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝑅𝑅𝑎𝑎 0 0 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2 −2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿𝑎𝑎 0 0 2(𝛽𝛽1 − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2 −2(𝛽𝛽1 − 𝛽𝛽2)2(𝛽𝛽1 + 𝛽𝛽2) 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎 −2(𝛽𝛽1 + 𝛽𝛽2)2𝑇𝑇 2(𝛽𝛽1 − 𝛽𝛽2)2𝐻𝐻 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 −2(𝛽𝛽1 + 𝛽𝛽2)2𝑇𝑇 2(𝛽𝛽1 − 𝛽𝛽2)2𝐻𝐻 0 0 

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 2𝛽𝛽12𝛽𝛽22(𝛽𝛽12 − 𝛽𝛽22)2 −2𝛽𝛽12𝛽𝛽22(𝛽𝛽12 − 𝛽𝛽22)2 0 0 

𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 2(𝛽𝛽12 − 𝛽𝛽22)2 −2(𝛽𝛽12 − 𝛽𝛽22)2 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 − 𝛽𝛽22)2 0 0 

𝑅𝑅𝑎𝑎 0 0 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2𝑇𝑇 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 

𝑅𝑅𝑏𝑏 0 0 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)2𝑇𝑇 2𝛽𝛽1(𝛽𝛽1 − 𝛽𝛽2)2𝛽𝛽2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 

𝐿𝐿𝑎𝑎 0 0 −2(𝛽𝛽1 − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2𝑇𝑇 2(𝛽𝛽1 − 𝛽𝛽2)2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 

𝐿𝐿𝑏𝑏 0 0 −2(𝛽𝛽1 − 𝛽𝛽2)(𝛽𝛽1 + 𝛽𝛽2)2𝑇𝑇 2(𝛽𝛽1 − 𝛽𝛽2)2(𝛽𝛽1 + 𝛽𝛽2)𝐻𝐻 

1 2(𝛽𝛽1 + 𝛽𝛽2)2𝑇𝑇2 −2(𝛽𝛽1 − 𝛽𝛽2)2𝐻𝐻2 0 0 
 



 

 

B-4 

Table B-2. Terms in Characteristic Stability Equation When Δ>0 and 2α2-k<Δ0.5 (Case 2: Complex Roots)—Part 1 

[𝑅𝑅𝐿𝐿] 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]1 

sin2(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]2 

cos2(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]3 

sin2(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1)  
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]4 

cos2(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1) 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 0 −4𝛽𝛽1𝛽𝛽2 4𝛽𝛽1𝛽𝛽2 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏 −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝑅𝑅𝑎𝑎  −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿𝑎𝑎  2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 0 0 −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22) 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎  0 2𝛽𝛽1𝛽𝛽2𝐿𝐿 −2𝛽𝛽1𝛽𝛽2𝐿𝐿 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 0 2𝛽𝛽1𝛽𝛽2𝐿𝐿 −2𝛽𝛽1𝛽𝛽2𝐿𝐿 0 

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 0 0 0 0 

𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 0 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎  0 2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 0 2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 −2𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)2 0 

𝑅𝑅𝑎𝑎  2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 
𝑅𝑅𝑏𝑏 2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 −2𝛽𝛽12𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 
𝐿𝐿𝑎𝑎  −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 

𝐿𝐿𝑏𝑏 −2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 2𝛽𝛽2(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 

1 0 −4𝛽𝛽1𝛽𝛽2𝐽𝐽𝐾𝐾 4𝛽𝛽1𝛽𝛽2𝐽𝐽𝐾𝐾 0 
 



 

 

B-5 

Table B-3. Terms in Characteristic Stability Equation When Δ>0 and 2α2-k<Δ0.5 (Case 2: Complex Roots)—Part 2 

[𝑅𝑅𝐿𝐿] 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]5 

sin(𝑏𝑏𝛽𝛽2) cos(𝑏𝑏𝛽𝛽2) sinh(2𝑏𝑏𝛽𝛽1  
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]6 

sin(𝑏𝑏𝛽𝛽2) cos(𝑏𝑏𝛽𝛽2) cosh(2𝑏𝑏𝛽𝛽1  
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]7 

sin2(𝑏𝑏𝛽𝛽2) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]8 

cos2(𝑏𝑏𝛽𝛽2) 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 −4(𝛽𝛽22 − 𝛽𝛽12) 0 4𝛽𝛽1𝛽𝛽2 4𝛽𝛽1𝛽𝛽2 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22) 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏 0 4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22) 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝑅𝑅𝑎𝑎  0 4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22) 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿𝑎𝑎  0 4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22) 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎  4𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(5,6) 0 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(7,6) 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(7,6) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 4𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(5,6) 0 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(7,6) 𝛽𝛽1𝛽𝛽2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(7,6) 

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 −4𝛽𝛽12𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22)2 0 0 0 

𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 4(𝛽𝛽12 + 𝛽𝛽22)2 0 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎  0 0 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 0 0 0 0 

𝑅𝑅𝑎𝑎  0 −4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 

𝑅𝑅𝑏𝑏 0 −4𝛽𝛽1𝛽𝛽22(𝛽𝛽12 + 𝛽𝛽22)𝐾𝐾 0 0 

𝐿𝐿𝑎𝑎  0 −4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 

𝐿𝐿𝑏𝑏 0 -4𝛽𝛽1(𝛽𝛽12 + 𝛽𝛽22)𝐽𝐽 0 0 

1 4𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶,(5,16) 0 4𝛽𝛽1𝛽𝛽2𝐽𝐽𝐾𝐾 4𝛽𝛽1𝛽𝛽2𝐽𝐽𝐾𝐾 
 



 

 

B-6 

Table B-4. Terms in Characteristic Stability Equation When Δ>0 (Case 3: Complex Conjugate Roots)—Part 1 

[𝑅𝑅𝐿𝐿] 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]1 

cosh(4𝑏𝑏𝑠𝑠) cos4(𝑏𝑏𝑡𝑡) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]2 

sinh(4𝑏𝑏𝑠𝑠) cos4(𝑏𝑏𝑡𝑡) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]3 

cosh(4𝑏𝑏𝑠𝑠) sin4(𝑏𝑏𝑡𝑡) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]4 

sinh(4𝑏𝑏𝑠𝑠) sin4(𝑏𝑏𝑡𝑡) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]5 

sin3(𝑏𝑏𝑡𝑡) cos(𝑏𝑏𝑡𝑡) 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 −2𝑡𝑡2 0 −2𝑡𝑡2 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 −4𝑠𝑠𝑡𝑡2 0 −4𝑠𝑠𝑡𝑡2 −16𝑠𝑠2𝑡𝑡 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏 0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝑅𝑅𝑎𝑎  0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −4𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿𝑎𝑎  0 −4𝑠𝑠𝑡𝑡2 0 −4𝑠𝑠𝑡𝑡2 −16𝑠𝑠2𝑡𝑡 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎  2𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝑅𝑅 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 2𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝑅𝑅 0 0 

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 0 0 

𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 −8𝑠𝑠2𝑡𝑡2 0 −8𝑠𝑠2𝑡𝑡2 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎  −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 

𝑅𝑅𝑎𝑎  0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡 𝑅𝑅� (𝑠𝑠2 + 𝑡𝑡2) 

𝑅𝑅𝑏𝑏 0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 4𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 16𝑠𝑠2𝑡𝑡𝑅𝑅� (𝑠𝑠2 + 𝑡𝑡2) 

𝐿𝐿𝑎𝑎  0 4𝑠𝑠𝑡𝑡2𝑅𝑅 0 4𝑠𝑠𝑡𝑡2𝑅𝑅 −16𝑠𝑠2𝑡𝑡𝑅𝑅�   
𝐿𝐿𝑏𝑏 0 4𝑠𝑠𝑡𝑡2𝑅𝑅 0 4𝑠𝑠𝑡𝑡2𝑅𝑅 −16𝑠𝑠2𝑡𝑡𝑅𝑅�   
1 −2𝑡𝑡2𝑅𝑅2 0 −2𝑡𝑡2𝑅𝑅2 0 0 
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Table B-5. Terms in Characteristic Stability Equation When Δ>0 (Case 3: Complex Conjugate Roots)—Part 2 

[𝑅𝑅𝐿𝐿] 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]6 

sin(𝑏𝑏𝑡𝑡) cos3(𝑏𝑏𝑡𝑡) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]7 

cosh(4𝑏𝑏𝑠𝑠) sin2(𝑏𝑏𝑡𝑡) cos2(𝑏𝑏𝑡𝑡) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]8 

sinh(4𝑏𝑏𝑠𝑠) sin2(𝑏𝑏𝑡𝑡) cos2(𝑏𝑏𝑡𝑡) 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]9 
sin4(𝑏𝑏𝑡𝑡) 

[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]10 
cos4(𝑏𝑏𝑡𝑡) 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 0 −4𝑡𝑡2 0 2𝑡𝑡2 2𝑡𝑡^2 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 16𝑠𝑠2𝑡𝑡 0 8𝑠𝑠𝑡𝑡2  0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏 −16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝑅𝑅𝑎𝑎  −16𝑠𝑠2𝑡𝑡(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 0 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿𝑎𝑎  16𝑠𝑠2𝑡𝑡 0 −8𝑠𝑠𝑡𝑡2 0 0 

𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎  0 4𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 

𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 0 4𝑡𝑡2𝑅𝑅 0 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 2𝑡𝑡2𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(9,6) 

𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 0 −16𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 0 8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 

𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 −16𝑠𝑠^2𝑡𝑡^2 0 8𝑠𝑠2𝑡𝑡2 8𝑠𝑠2𝑡𝑡2 

𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎  0 −16𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 

𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 0 −16𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 0 −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) −8𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 

𝑅𝑅𝑎𝑎  −16𝑠𝑠2𝑡𝑡 𝑅𝑅�(𝑠𝑠2 + 𝑡𝑡2) 0 8𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 0 

𝑅𝑅𝑏𝑏 −16𝑠𝑠2𝑡𝑡𝑅𝑅�(𝑠𝑠2 + 𝑡𝑡2) 0 8𝑠𝑠𝑡𝑡2𝑅𝑅(𝑠𝑠2 + 𝑡𝑡2) 0 0 

𝐿𝐿𝑎𝑎  16𝑠𝑠2𝑡𝑡𝑅𝑅�  0 8𝑠𝑠𝑡𝑡2𝑅𝑅 0 0 

𝐿𝐿𝑏𝑏 16𝑠𝑠2𝑡𝑡𝑅𝑅�  0 8𝑠𝑠𝑡𝑡2𝑅𝑅 0 0 

1 0 −4𝑡𝑡2𝑅𝑅2 0 2𝑡𝑡2𝑅𝑅2 2𝑡𝑡2𝑅𝑅2 
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Table B-6. Terms in Characteristic Stability Equation When Δ<0  
(Case 3: Complex Conjugate Roots)—Part 3 

[𝑅𝑅𝐿𝐿] 
[𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇]11 

sin2(𝑏𝑏𝑡𝑡) cos2(𝑏𝑏𝑡𝑡) 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 4(4𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏 0 
𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝑅𝑅𝑎𝑎  0 
𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿𝑎𝑎  0 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎  𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,6) 
𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,6) 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 −48𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2)2 
𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 −48𝑠𝑠2𝑡𝑡2 
𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎  48𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 48𝑠𝑠2𝑡𝑡2(𝑠𝑠2 + 𝑡𝑡2) 
𝑅𝑅𝑎𝑎  0 
𝑅𝑅𝑏𝑏 0 
𝐿𝐿𝑎𝑎  0 
𝐿𝐿𝑏𝑏 0 
1 4𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,(11,16) 

 
Table B-7. Terms in Characteristic Stability Equation not Multiplying Trigonometric Functions 

When Δ>0 and 2α2-k>Δ0.5 (Case 1: Real Roots) 

[𝑅𝑅𝐿𝐿] [𝐿𝐿𝑅𝑅𝑇𝑇𝑇𝑇] 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 −8𝛽𝛽1 𝛽𝛽2 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎𝑅𝑅𝑏𝑏 0 
𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝑅𝑅𝑎𝑎  0 
𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿𝑎𝑎  0 
𝑅𝑅𝑎𝑎𝐿𝐿𝑎𝑎  −4𝛽𝛽1𝛽𝛽2[𝛽𝛽14 + 𝛽𝛽24 − 2𝛼𝛼2𝐶𝐶𝜈𝜈 + 𝛽𝛽12(𝑘𝑘 − 2𝛼𝛼2)

+ 𝛽𝛽22(𝑘𝑘 − 2𝛼𝛼2)] 
𝑅𝑅𝑏𝑏𝐿𝐿𝑏𝑏 −4𝛽𝛽1𝛽𝛽2[𝛽𝛽14 + 𝛽𝛽24 − 2𝛼𝛼2𝐶𝐶𝜈𝜈 + 𝛽𝛽12(𝑘𝑘 − 2𝛼𝛼2)

+ 𝛽𝛽22(𝑘𝑘 − 2𝛼𝛼2)] 
𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏 0 
𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏 0 
𝑅𝑅𝑏𝑏𝐿𝐿𝑎𝑎  0 
𝑅𝑅𝑎𝑎𝐿𝐿𝑏𝑏 0 
𝑅𝑅𝑎𝑎  0 
𝑅𝑅𝑏𝑏 0 
𝐿𝐿𝑎𝑎  0 
𝐿𝐿𝑏𝑏 0 
1 −8𝛽𝛽1𝛽𝛽2(𝛽𝛽12 + 𝐶𝐶)(𝛽𝛽22 + 𝐶𝐶)(𝛼𝛼2𝜈𝜈 − 𝛽𝛽12)(𝛼𝛼2𝜈𝜈 − 𝛽𝛽22) 
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